Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we present a boundary integral method in order to determine the oscillatory Stokes flow due to translational or rotational oscillations of a solid particle in an unbounded viscous incompressible fluid. As an application of this method, we study both cases of small-and high-frequency oscillations. Finally, we give some numerical results in the case of transverse oscillations of a prolate spheroid.
Rocznik
Tom
Strony
603-620
Opis fizyczny
Bibliogr. 21 poz., wykr.
Twórcy
autor
- Faculty of Mathematics and Computers Science Babeş-Bolyai University, M. Kogălniceanu 1 3400 Cluj-Napoca, ROMANIA, mkohr@math.ubbcluj.ro
autor
- Faculty of Mathematics University of Cluj R-3400 Cluj, CP 253, ROMANIA
Bibliografia
- [1] Basset A.B. (1888): A Treatise on Hydrodynamics. - Cambridge: Deighton Bell, vol.2.
- [2] Batchelor G.K. (1967): An Introduction to Fluid Dynamics. - Cambridge: Cambridge University Press.
- [3] Fisher T.M. (1982): An integral equation procedure for the exterior three-dimensional slow – Integraf Equations and Operator Theory, vol.5, pp.490-505.
- [4] Gavze E. (1990): The accelerated motion of rigid bodies in non-steady Stokes flow. - J. Multiphase Flow, vol.l6, pp. 153-166.
- [5] Kim S. and Russel W.B. (1985): The hydrodynamic interaction between two spheres in a Brinkman medium. - J. Fluid Mech., vol.l54, pp.253-268.
- [6] Kohr M. (2000a): Modern Problems in Viscous Fluid Mechanics. - Cluj-Napoca: Cluj University Press (in Romanian).
- [7] Kohr M. (2000b): An indirect boundary integral method for a Stokes flow problem. - Comput. Meth. Appl. Mech. Engrg., vol.l90, pp.487-497.
- [8] Ladyzhenskaya O.A. (1969): The Mathematical Theory of Viscous Incompressible Flow. - New York: Gordon and Breach.
- [9] Lawrence C.J. and Weinbaum S. (1986): The force on an axisymmetric body in linearized time-dependent motion: a new memory term. - J. Fluid Mech., vol.l71, pp.209-218.
- [10] Loewenberg M. (1994): Axisymmetric unsteady Stokes flow past an oscillating finite-length cylinder. - J. Fluid Mech., vol.265, pp.265-288.
- [11] McCracken M. (1981): The resolvent problem for the Stokes on half space in Lp- SIAM J. Math. Anal., vol.l2, pp.201-228.
- [12] Pozrikidis C. (1989a): A singularity method for unsteady linearized flow - Phys. Fluids A, vol.l, pp.1508-1520.
- [13] Pozrikidis C. (1989b): A study of linearized oscillatory flow past particles by the boundary - integral method. - J. Fluid Mech., vol.202, pp. 17-41.
- [14] Pozrikidis C. (1992): Boundary Integral and Singularity Methods for Linearized Viscous Flow. - Cambridge: Cambridge University Press.
- [15] Pozrikidis C. (1993): Unsteady viscous flows over irregular boundaries. - J. Fluid Mech., vol.255, pp.l 1-34.
- [16] Pozrikidis C. (1997): Introduction to Theoretical and Computational Fluid Dynamics. - Oxford: (Mord University Press.
- [17] Smith S.H. (1995): Structural changes in transient Stokes flow. - Q.J. Mech. Appl. Math., vol.48, pp.285-309.
- [18] Stokes G.G. (1851): On the effect of the internal friction of the fluids on the motion of pendulums. - Trans. Cambridge Philos. Soc., vol.9, pp.9-106.
- [19] Taylor M.E. (1981): Pseudodifferential Operators. - Princeton: Princeton Univ. Press.
- [20] Vamhorn W. (1994): The Stokes Eąuations. - Berlin: Akademie Verlag.
- [21] Zhang W. and Stone H.A. (1998): Oscillatory motions of circular disks and nearly spherical particles in - J. Fluid Mech., vol.367, pp.329-358.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0003-0031