Warianty tytułu
Języki publikacji
Abstrakty
The properties of symmetry of turbulent boundary layer flows are studied utilizing the Lie group theory. The self-similar forms of the independent variables and the solution functions for the boundary-layer type flows for four models of turbulent viscosity are obtained. The developed approach of finding a self-similar transformation for turbulent boundary-layer problems makes it possible to obtain numerical and simplified analytical solutions for a number of important flow situations.
Rocznik
Tom
Strony
543-557
Opis fizyczny
Bibliogr. 11 poz., tab., wykr.
Twórcy
autor
- Institute of Engineering Thermophysics, National Academy of Sciences Kiev, UKRAINE
autor
- Institute of Engineering Thermophysics, National Academy of Sciences Kiev, UKRAINE
autor
- Department of Mechanical and Aerospace Engineering, North Carolina State University Campus Box 7910, Raleigh, NC 27695-7910, USA, avkuznet@eos.ncsu.edu
autor
- Mech. Eng. and Energy Studies Division Cardiff University Queen's Buildings PO BOX 685 Cardiff CF 3TA Wales, UNITED KINGDOM
Bibliografia
- [1] Avramenko A.A., Kobzar S.G., Shevchuk I.V., Kuznetsov A.V. and Iwanisoy L.T. (2001): Symmetry of turbulent boundary layer flows: Investigation of different eddy viscosity models. - Acta Mechanica, vol.l51, pp.1-14.
- [2] Abramowitz M. and Stegun I.A. (Eds.) (1964): Handbook of Mathematical Functionm. - Washington: U.S. Govt. Print. Off.
- [3] Cebeci T. and Bradshaw P. (1984): Physical and Computational Aspects of Convective Heat Transfer. - New York: Springer-Verlag.
- [4] Ibragimov N.H. and Unal G. (1994): Lie groups in turbulence. - Lie Groups and Their Applications, vol.l, pp.98-103.
- [5] Khor'kova N.G. and Verboyetsky A.M. (1995): On symmetry subalgebras and conservation laws for the k-e turbulence model and the Navier-Stokes equations. - Amer. Math. Soc. Transl, vol.l67, pp.61-90.
- [6] Nee P., and Kovasznay L.S.G. (1969): Structure of the turbulent boundary layer. - Phys. Fluids, vol.l2, pp.473-484.
- [7] Olver P.J. (1993): Applications of Lie Groups to Differential Equations. - New York: Springer-Verlag, 2nd edition.
- [8] Reynolds A.J. (1974): Turbulent Flows in Engineering. - New York: Wiley.
- [9] Schlichting H. (1979): Boundary Layer Theory. - New York: McGraw-Hill.
- [10] Umal G. (1994): Application of equivalence transformations to inertial subrange of turbulence. - Lie Groups and Their Applications, vol.l, pp.232-240.
- [11] Yakhot K. and Orszag S.A. (1986): Renormalization group analysis of turbulence. - J. Sci. Comp., vol.l, pp.3-51.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0003-0027