Czasopismo
2002
|
Vol. 7, no 4
|
1189-1198
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The flow of an incompressible second order/grade fluid due to non-coaxial rotation of a porous disk and the fluid at infinity with the common angular velocity is studied. It is shown that there are physically acceptable solutions for both suction and blowing cases, depending on the sign of the material modulus 'alpha'1 . It is observed that the elasticity of the fluid causes the boundary layer thickness to increase in the case of suction, whereas it causes the boundary layer thickness to decrease in the case of blowing.
Rocznik
Tom
Strony
1189-1198
Opis fizyczny
Bibliogr. 24 poz., wykr.
Twórcy
autor
- Department of Mechanics, Faculty of Mechanical Engineering Istanbul Technical University 80191, Gümüşsuyu - Istanbul, TURKEY, volkan@mkn.itu.edu.tr
autor
- Department of Mechanics, Faculty of Mechanical Engineering Istanbul Technical University 80191, Gümüşsuyu - Istanbul, TURKEY
Bibliografia
- [1] Berker R. (1979): A new solution of the Navier-Stokes equation for the motion of a fluid contained between two parallel plates rotating about the same axis. - Arch. Mech. Stosow., vol.31, pp.265-280.
- [2] Coirier J. (1972): Rotations non coaxiales d'un disque et d'un fluide a I'infini. - J. Mecanique, vol.ll, pp.317-340.
- [3] Dunn J.E. and Fosdick R.L. (1974): Thermodynamics, stability and boundedness of fluids of complexity two and fluids of second grade. - Arch. Rational Mech. Anal., vol.56, pp.191-252.
- [4] Dunn J.E. and Rajagopal K.R. (1995): Fluids of differential type: critical review and thermodynamic analysis. - Int. J. Eng. Sci., vol.33, pp.689-729.
- [5] Erdogan M.E. (1976a): Flow due to eccentric rotating a porous disk and a fluid at infinity. - Trans. ASME J. Appl. Mech., vol.43E, pp.203-204.
- [6] Erdogan M.E. (1976b): Non-Newtonian flow due to noncoaxially rotations of a disk and a fluid at infinity. - Z. Angew. Math. Mech., vol.56, pp.141-146.
- [7] Erdogan M.E. (1977): Flow due to noncoaxially rotations of a porous disk and a fluid at infinity. - Rev. Roum. Sci. Techn.- Mec. Appl., vol.22, pp.171-178.
- [8] Erdogan M.E. (1997): Unsteady flow of a viscous fluid due to non-coaxial rotations of a disk and a fluid at infinity. - Int. J. Non-Linear Mech., vol.32, pp.285-290.
- [9] Erdogan M.E. (2000): Flow induced by non-coaxial rotation of a disk executing non- torsional oscillations and a fluid rotating at infinity. - Int. J. Eng. Sci., vol.38, pp.175-196.
- [10] Ersoy H.V. (2000): MHD flow of an Oldroyd-B fluid due to non-coaxial rotations of a porous disk and the fluid at infinity. - Int. J. Eng. Sci., vol.38, pp. 1837-1850.
- [11] Fosdick R.L. and Rajagopal K.R. (1979): Anomalous features in the model of second order fluids. - Arch. Rational Mech. Anal., vol.70, pp. 145-152.
- [12] Hayat T., Asghar S. and Siddiqui A.M. (1999): Unsteady flow of an oscillating porous disk anda fluid at infinity. - Meccanica, vol.34, pp.259-265.
- [13] Kasiviswanathan S.R. and Rao A.R. (1987): An unsteady flow due to eccentrically rotating porous disk and a fluid at infinity. - Int. J. Eng. Sci., vol.25, pp. 1419-1425.
- [14] Lai C.-Y., Rajagopal K.R. and Szeri A.Z. (1985): Asymmetric flow above a rotating disk. - J. Fluid Mech., vol.157, pp.471-492.
- [15] Murthy S.N. and Ram R.K.P. (1978): MHD flow and heat transfer due to eccentric rotations of a porous disc and a fluid at infinity. - Int. J. Eng. Sci., vol.16, pp.943-949.
- [16] Rajagopal K.R. (1981): The flow of a second order fluid between rotating parallel plates. - J. Non-Newtonian Fluid Mech., vol.9, pp. 185-190.
- [17] Rajagopal K.R. and Gupta A.S. (1984): An exact solution for the flow of a non- Newtonian fluid past an infinite porous plate. - Meccanica, vol.19, pp. 158-160.
- [18] Rajagopal K.R. (1984a): On the creeping flow of the second-order fluid. - J. Non- Newtonian Fluid Mech., vol.15, pp.239-246.
- [19] Rajagopal K.R. (1984b): A class of exact solutions to the Navier-Stokes equations. - Int. J. Eng. Sci., vol.22, pp.451-458.
- [20] Rajagopal K.R. (1992): Flow of viscoelastic fluids between rotating disks. - Theor. Comput. Fluid Dyn., vol.3, pp. 185-206.
- [21] Rajagopal K.R. (1994): On boundary conditions for fluids of the differential type, In: Navier-Stokes Equations and Related Non-Linear Problems (A. Sequiera, Ed.). - New York: Plenum Press.
- [22] Rivlin R.S. and Ericksen J.L. (1955): Stress-deformation relations for isotropic materials. - J. Rational Mech. Anal., vol.4, pp.323-425.
- [23] Siddiqui A.M., Haroon T., Hayat T. and Asghar S. (2001): Unsteady MHD flow of a non-Newtonian fluid due to eccentric rotations of a porous disk and a fluid at infinity. - Acta Mech., vol.147, pp.99-109.
- [24] Truesdell C. and Rajagopal K.R. (2000): An Introduction to the Mechanics of Fluids. - Boston: Birkhauser.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0001-0062