Czasopismo
2002
|
Vol. 7, no 1
|
245-265
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
We discuss structural response analysis of vessels subjected to hydrodynamic loads. The response analyses are performed in order to assess vessel strength either through quasi-static ultimate strength analyses (ULS) or stochastic fatigue analyses (FLS). We focus on consistency in modeling with emphasis on accurate load transfer between the fluid- and structure domains. In wave analysis the dynamic pressure- and inertia forces are generated through a linear ship, where the vessel is treated as a rigid body. The calculated pressure forces are distributed on the fluid panel interface while the inertia forces (accelerations) are represented on the rigid body structure. The final strength assessment is carried out on a finite element model (FEM). The FEM interface model and the panel interface model are assumed to be incompatible both in geometry and field representation.
Rocznik
Tom
Strony
245-265
Opis fizyczny
Bibliogr. 10 poz., rys., tab.
Twórcy
autor
- Det Norske Veritas, Corporate Technology and innovation DNV Software Factory, N-1322, Hovik, Norway, Geir.Skeie@dnv.com
autor
- Det Norske Veritas, Corporate Technology and innovation DNV Software Factory, N-1322, Hovik, Norway
Bibliografia
- [1] Bernardi C., Maday Y. and Patera A. (1994): A new non-conforming approach to domain decomposition: The mortar element method, In: College de France Seminar (H. Brezis and J.-L. Lions, Eds.). - Pitman.
- [2] Cebral J.R. and Löhner R. (1998): Transfer for viscous fluid-structure interaction, In: Computational Mechanics. New Trends and Applications (S. Idelsohn, E. Önate and E. Dvorkin, Eds.). - Barcelona, Spain: CIMNE.
- [3] Farhat C., Lesoinne M. and LeTellec P. (1998): Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity. - Computer Methods in Applied Mechanics and Engineering, vol.157, pp. 95-114.
- [4] Hughes T.J.R. (1987): The Finite Element Method, Linear Static and Dynamic Finite Element Analysis. - Englewood Cliffs, New Jersey: Prentice-Hall.
- [5] Kring D., Huang Y.-F., Sclavounos P., Vada T. and Braathen A. (1996): Nonlinear ship motions and wave-induced loads by a Rankine method. - In: 21st Symp. On Naval Hydrodynamics, Trondheim, Norway.
- [6] Kvamsdal T., Jenssen C.B., Okstad K.M. and Amundsen J. (1999): Fluid-structure interaction for structural design, In: Computational Methods for Fluid-Structure Interaction (T. Kvamsdal, I. Enevoldsen, K. Herfjord, C. Jenssen, K. Mehr and S. N0rsett, Eds.). - Trondheim, Norway: Tapir Publisher, pp.211-238.
- [7] Löhner R., Yang C., Cebral J., Baum J., Mestreau E., Luo H., Pelessone D. and Charman C. (1999): Fluid-structure-thermal interaction using adaptive unstructured grids, In: Computational Methods for Fluid-Structure Interaction (T. Kvamsdal, I. Enevoldsen, K. Herfjord, C. Jenssen, K. Mehr and S. N0rsett, Eds.) - Trondheim, Norway: Tapir Publisher, pp.109-120.
- [8] Malvern L.E. (1969): Introduction to the Mechanics of Continuous Medium. - Englewood Cliffs, New Jersey: Prentice-Hall.
- [9] Oden J.T. (1979): Applied Functional Analysis: A First Course for Students of Mechan¬ics and Engineering Sciences. - Englewood Cliffs, New Jersey: Prentice-Hall.
- [10] Skeie G. (1998): Load transfer in fluid structure interaction. - Technical Report No.98- 2009, Det Norsk Veritas.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0001-0013