Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | Vol. 31, no. 4 | 59-74
Tytuł artykułu

Artifacts extraction from EEG data using the infomax approach

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the research is to detect and remove undesired components from EEG data by means of ICA approach. Besides classical signal analysis tools such as adaptive supervised filtering, parametric or non-parametric spectral estimation, time-frequency analysis, the proposed ICA technique can be used for detection of a wide group of artifacts from EEG data. In this paper a new form of nonlinearity implemented in the infomax approach is presented. As it has been proven experimentally, the proposed new sigmoidal function can effectively detect the selected group of artifacts from EEGs and is an useful approach to speed up computations.
Wydawca

Rocznik
Strony
59-74
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
autor
autor
  • Departament of Systems Engineering, Signals and Electronics, West Pomeranian University of Technology, 26 kwietnia 10, 71-126 Szczecin, Poland, gorecka@zut.edu.pl
Bibliografia
  • 1. Majkowski J.: Clinical Electroencephalography (in Polish). Państwowy Zakład Wydawnictw Lekarskich, Warszawa 1986.
  • 2. Fisch B. J.: EEG Primer - basic principles of digital and analog eeg, Elsevier 2000.
  • 3. Sanei S., Chambers J. A.: EEG Signal Processing. Wiley 2007.
  • 4. Viola F. C., Thorne J., Edmonds B., Schneiger T., Eichele T., Debener S.: Semi-automatic identification of independent components representing EEG artifact. Clinical Neurophysiology 2009, 120, 868-877.
  • 5. Hyvärinen A., Karhunen J., Oja E.: Independent Component Analysis. Wiley, 2001.
  • 6. Jung T.-P., Makeig S., Humphries C., Lee T.-W., McKeown M. J., Iragui V., Sejnowski T. J.: Removing electroencephalographic artifacts by blind source separation. Psychophysiology, Cambridge University Press 2000, 37, 163-178.
  • 7. Delorme A., Sejnowski T., Makeig S.: Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage 2007, 34, 1443-1449.
  • 8. Krishnaveni V., Jayaraman S., Gunasekaran A., Ramadoss K.: Automatic Removal of Ocular Artifacts using JADE Algorithm and Neural Network, International Journal of Computer Systems Science and Engineering 2006, 1, 322-333.
  • 9. Chen X., Wang L., Xu Y.: A Symmetric Orthogonal FastICA Algorithm and Applications in EEG. 5th Intern. Conf. Natural Computation ICNC '09, Tianjin China, 2009, 504-508.
  • 10. Fitzgibbon S. P., Powers D. M. W., Pope K. J., Clark C. R.: Removal of EEG Noise and Artifact Using Blind Source Separation. J. Clin. Neuroph. 2007, 24.
  • 11. Górecka J.: Using the Independent Component Analysis for removal of undesired components from EEG data (in Polish). Inżynieria Biomedyczna, 2009, 15, 87-90.
  • 12. Lee T.-W., Sejnowski T. J.: Independent Component Analysis for mixed sub-gaussian and super-gaussian sources. 4th Joint Symposium on Neural Computation Proc. 1997, 132-139.
  • 13. Makeig S. et al.: EEGLAB: ICA Toolbox for Psychophysiological Research, WWW Site, Swartz Center for Computational Neuroscience, Institute of Neural Computation, University of San Diego, California, http://sccn.ucsd.edu/eeglab/.
  • 14. Lee T.-W.: Independent Component Analysis. Theory and Applications. Kluwer Academic Publishers, 1998.
  • 15. Menon A., Mehrotra K., Mohan Ch. K., Ranka S.: Characterization of a class of sigmoid functions with applications to neural networks. Neural Networks 1996, 9, 819-835.
  • 16. Cardoso J. F.: On the stability of source separation algorithms. The Journal of VLSI Signal Processing, Springer 2000, 26, 7-14.
  • 17. Choi S., Cichocki A., Amari S.: Flexible Independent Component Analysis, Journal of VLSI Signal Processing - Systems for Signal. Image and Video Technology, Kluwer, 2000, 1-18.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0073-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.