Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | Vol. 31, no. 4 | 31-41
Tytuł artykułu

LTCC microfluidic systems for biochemical diagnosis

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents design, fabrication and testing of three LTCC (Low Temperature Co-fired Ceramics) based microfluidic systems. These microdevices are: enzymatic microreactor for urea determination, potentiometric sensor with ion selective electrodes (ISE) based array sensitive to potassium ions and amperometric glucose sensor. Performance of the presented LTCC-based microfluidic systems has been tested. All ceramic microdevices have revealed high output signal and large detection range. The properties of the presented LTCC-based microfluidic systems are comparable with similar ones made of silicon. Obtained results has shown that presented ceramic microsystems can work as a stand-alone device or can be integrated into a more sophisticated micro analysis system for in vivo or in vitro monitoring of various (bio)chemical compounds.
Wydawca

Rocznik
Strony
31-41
Opis fizyczny
Bibliogr. 18 poz., rys., wykr.
Twórcy
autor
autor
  • Faculty of Microsystem Electronics and Photonics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland, karol.malecha@pwr.wroc.pl
Bibliografia
  • 1. Manz A., Graber N., Widem H. M.: Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors and Actuators B, Chemical 1990, 1, 244-248.
  • 2. Bargiel S., Górecka-Drzazga A., Dziuban J. A., Prokarn P., Chudy M., Dybko A., Brzózka Z.: Nanoliter detectors for flow systems. Sensors and Actuators A, Physical 2004, 115, 245-251.
  • 3. Fujii T.: PDMS-based microfluidic devices for biomedical applications. Microel. Eng. 2002, 61-62, 907-914.
  • 4. Duffy D. C., McDonald J. C., Schueller O. J. A., Whitesides M.: Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 1998, 70, 4974-4984.
  • 5. Merkel T., Graeber M., Pagel L.: A new technology for fluidic microsystems based on PCB technology. Sensors and Actuators A, Physical 1999, 77, 98-105.
  • 6. Laritz C., Pagel L.: A microfluidic pH-regulation systems based on printed circuit board technology, Sensors and Actuators A. Physical 2000, 84, 230-235.
  • 7. Ibanez-Garcia N., Martinez-Cisoneros C. S., Valdes F., Alonso J.: Green-tape ceramics. New technological approach for integrating electronics and fluidics in microsystems. Trends in Analytical Chemistry 2008, 27, 24-33.
  • 8. Gongora-Rubio M. R., Espinoza-Vallejos P., Sola-Laguna L., Santago-Aviles J. J.: Overview of low temperature co-fired tape technology for meso-system technology (MsST). Sensors and Actuators A, Physical 2002, 89, 222-241.
  • 9. Muller E., Bartnitzek T., Bechtold F., Pawlowski B., Rohte P., Ehrt R., Heymel A., Weiland E., Schroter T., Schundau S., Kaschlik K.: Development and processing of an anodic bondable LTCC tape. Proc. 1st Int. Conf. and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies, Baltimore (USA), 2005, 53-58.
  • 10. Bembnowicz P., Golonka L. J.: Integration of transparent glass window with LTCC technology for \miTAS application. J. Europ. Ceram. Soc. 2010, 30, 743-749.
  • 11. Malecha K., Gancarz I., Golonka L. J.: A PDMS/LTCC bonding technique for microfluidic applications. J. Micromech. Microeng. 2009, 19, 105016.1-105016.8.
  • 12. Ibanez-Garcia N., Machado Goncalves R. D., Mendes da Rocha Z., Gongora-Rubio M. R., Seabra A. C., Alonso Chamarro J.: LTCC meso-analytical system or chloride ion determination in drinking waters. Sensors and Actuators B, Chemical 2006, 118, 67-72.
  • 13. Malecha K., Golonka L. J., Bałdyga J., Jasińska M., Sobieszuk P.: Serpentine micromixer made in LTCC. Sensors and Actuators B, Chemical 2009, 143, 400-413.
  • 14. Malecha K., Pijanowska D. G., Golonka L. J.: LTCC microreactor for urea determination in biological fluids. Sensors and Actuators B, Chemical 2009, 141, 301-308.
  • 15. Sadler D. J., Changrani R., Roberts P., Chou C., Zenhausern F.: Thermal management of BioMEMS: temperature control of ceramic based PCR and DNA detection devices. IEEE Trans. Compon. Pack. Technol. 2003, 26, 309-316.
  • 16. Pijanowska D. G., Ramiszewska E., Pederzolli C., Lunelli L., Vendano M., Canteri R., Dudziński K., Kruk J., Torbicz W.: Surface modification for microreactors fabrication. Sensors 2006, 6, 370-379.
  • 17. Pijanowska D. G., Sprenkles A. J., Olthuis W., Bergveld P.: A flow-through amperometric sensor for micro-analytical systems, Sensors and Actuators B, Chemical 2003, 91, 98-102.
  • 18. Bembnowicz P., Małodobra M., Kubicki W., Szczepańska P., Górecka-Drzazga A., Dziuban J., Jonkisz A., Karpiewska A., Dobosz T., Golonka L. J.: Preliminary studies on LTCC based microreactor. Sensors and Actuators B, Chemical 2010, 150, 715-721.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0073-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.