Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | Vol. 31, no. 2 | 33-50
Tytuł artykułu

Multimodal neurosurgery force feedback system based on mesh fusion modeling

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Virtual reality based force feedback system is spotlighted as a safe and efficient training environment to obtain surgical skills. Neurosurgery utilizes multimodal patient images for visualization of a variety of functions in head. The aim of this study is to establish a concept of multimodal neurosurgery force feedback system based on mesh fusion modeling. In the model of mesh fusion, we developed an algorithm to detect overlapped region between the multiple meshes that are obtained from multimodal images, and to determine a new boundary between the meshes. Then, the method solved interaction between the newly defined mesh boundaries using the interaction model based on a finite element method. The proposed method was implemented, and applied to both simple and patient datasets for evaluating its applicability. As a result, the method succeeded to be applied to both simple and patient datasets. Finally, we demonstrated the early stage of the surgical approach in neurosurgery. Simulation results showed a real-time simulation of brain tissue deformation with force feedback.
Wydawca

Rocznik
Strony
33-50
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
autor
autor
autor
autor
autor
Bibliografia
  • 1. Liu A., Tendick F., Cleary K., Kaufmann C.: A survey of surgical simulation: applications, technology, and education. Presence: Teleoper. Virtual Environ, MIT Press, 2003, 12, 6, 599-614.
  • 2. Sorensen T. S., Mosegaard J.: Haptic feedback for the GPU-based surgical simulator. Stud. Health Technol. Inform. 2006, 119, 523-528.
  • 3. Kuroda Y., Hirai M., Nakao M., Sato T., Kuroda T., Nagase K., Yoshihara H.: Organ Exclusion Simulation with Multi-finger Haptic Interaction for Open Surgery Simulator. Stud. Health Technol. Inform. 2007, 125, 244-249.
  • 4. Bachofen D., Zatonyi J., Harders M., Szekely G., Frueh P., Thaler M.: Enhancing the Visual Realism of Hysteroscopy Simulation. Medicine Meets Virtual Reality 2006, 31-36.
  • 5. Kamada K., Ota T., Kawai K., Kuroda Y., Oshiro O., Aoki S., Saito N.: Visualization of cranial nerves and surrounding structures with a 3T-MR scanner for skull base surgery. Proc. Asian Australasian Congress of Neurosurgical Surgeon 2007, M19-4-6.
  • 6. Malone H., Syed O., Downes M., D'Ambrosio A., Quest D., Kaiser M.: Simulation in Neurosurgery: A Review of Computer-Based Simulation Environments and Their Surgical Applications. Neurosurgery 2010, 67, 4, 1105-1116.
  • 7. Hayashi N., Endo S., Shibata T., Ikeda H., Takaku A.: Neurosurgical simulation and navigation with threedimensional computer graphics. Neurol. Res. 1999, 21, 1, 60-66.
  • 8. Spicer M. A., Apuzzo M. L.: Virtual Reality Surgery: Neurosurgery and the Contemporary Landscape. Neurosurgery 2003, 52, 3, 489-498.
  • 9. Spicer M. A., van Velsen M., Caffrey J. P., Apuzzo M. L.: Virtual Reality Neurosurgery: A Simulator Blueprint. Neurosurgery 2004, 54, 4, 783-798.
  • 10. Kuroda Y., Kamada K., Kagiyama Y., Imura M., Oshiro O.: Mesh Fusion Modeling for Neurosurgery Force Feedback System. Lecture Notes of the ICB Seminars: 10th Japanese-Polish Seminar on Biomedical Engineering: New Trends in biomedical and clinical engineering, 2010, 84, 97-102.
  • 11. Kuroda Y., Kamada K., Kagiyama Y., Imura M., Oshiro O.: Neurosurgery Simulation with Multiple Meshes. Jap. J. Med. Virt. Real. 2010, 8, 1, 1-10 (in Japanese).
  • 12. Kuroda Y., Nakao M., Kuroda T., Oyama H., Komori M.: Interaction Model between Elastic Objects for Haptic Feedback considering Collisions of Soft Tissue. Compr. Meth. Progr. Biomed. 2005, 80, 3, 216-224.
  • 13. Delingette H.: Toward realistic soft tissue modeling in medical simulation. Proc. IEEE 1998, 86, 3, 512-523.
  • 14. Monserrat C., Meier U., Alcaniz M., Chinesta F., Juan M. C.: New approach for the real-time simulation of tissue deformations based on boundary element methods. Comput. Meth. Program. Biomed. 2001, 64, 2, 77-85.
  • 15. Selle A., Su J., Irving G., Fedkiw R.: Robust High-Resolution Cloth Using Parallelism, History-Based Collisions, and Accurate Friction. IEEE Trans. Visual. Comp. Graph. 2009, 15, 2, 339-350.
  • 16. Sibille L., Teschner M., Srivastava S., Latombe J.: Interactive simulation of the human hand. Proc. f Comput. Assist. Radiol. Surg. 2002, 7-12.
  • 17. Joukhadar A., Wabbi A., Laugier C.: Fast contact localization between deformable polyhedra in motion. Proc. IEEE Comput. Animat. Conf. 1996, 126-135.
  • 18. Hirota K., Kaneko T.: Haptic Representation of Elastic Objects. MIT Presence, 2001, 10, 5, 525-536, 2001.
  • 19. Nakao M., Kuroda T., Minato K.: Volumetric Mask and its Real-time Processing for Volume Interaction. Trans. Virtual Reality Society of Japan 2005, 10, 4, 591-598 (in Japanese).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0069-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.