Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | Vol. 26, no. 4 | 47-54
Tytuł artykułu

3D matrigel culture improves differentiated functions of HepG2 cells in vitro

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In our study, the influence of culture conditions (monolayer and 3D Matrigel) of hepatocyte cell line (buman hepatoma cell line, HepG2) on their metabolic activity was assessed. Albumin synthesis by HepG2 cells was significantly higher in Matrigel culture as compared to monolayer culture of the cells. 3D culture improved urea production by HepG2 cells. The detoxification experiments revealed that HepG2 cells do not metabolize lidocaine neither in monolayer nor in 3D culture. 3D culture significantly improved cell polarity analyzed by F-actin staining and carboxyfluorescein excretion. In conclusion, the 3D Matrigel culture improves highly differentiated hepatic functions of HepG2 cells.
Wydawca

Rocznik
Strony
47-54
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Biocybenetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland, kinas@ibib.waw.pl
Bibliografia
  • 1. Hoekstra R., Chamuleau R.A.: Recent developments on human cell lines for the bioartificial liver. Int. J. Artif. Organs. 2002, 25, 182-191.
  • 2. Patzer J.F., 2nd, Mazariegos G.V., Lopez R. et al: Novel bioartificial liver support system: preclinical evaluation. Ann. N. Y. Acad. Sci. 1999, 875, 340-352.
  • 3. Ambrosino G., Varotto S., Basso M.M. et al.: Development of a new bioartificial liver using a porcine autologous biomatrix as hepatocyte support. Asaio. J. 2002, 48, 592-597.
  • 4. Dore E., Legallais C.: A new concept of bioartificial liver based on a fluidized bed bioreactor. Ther. Apher. 1999, 3, 264-267.
  • 5. Arnaout W.S., Moscioni A.D., Barbour R.L. et al.: Development of bioartificial liver: bilirubin conjugation in Gunn rats. J. Surg. Res. 1990, 48, 379-382.
  • 6. Enosawa S., Miyashita T., Tanaka H. et al.: Prolongation of survival of pigs with ischemic liver failure by treatment with a bioartificial liver using glutamine synthetase transfected recombinant HepG2. Transplant. Proc. 2001, 33, 1945-1947.
  • 7. Bader A., Knop E., Kern A. et al.: 3-D coculture of hepatic sinusoidal cells with primary hepatocytes-design of an organotypical model. Exp. Cell. Res. 1996, 226, 223-233.
  • 8. Berthiaume F., Moghe P.V., Toner M. et al:: Effect of extracellular matrix topology on cell structure, function, and physiological responsiveness: hepatocytes cultured in a sandwich configuration. Faseb. J. 1996, 10, 1471-1484.
  • 9. Piwowarska J., Kuczynska J., Pachecka J.: Liquid chromatographic method for the determination of lidocaine and monoethylglycine xylidide in human serum containing various concentrations of bilirubin for the assessment of liver function. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2004, 805, 1-5.
  • 10. Wulf E., Deboben A., Bautz F.A. et al.: Fluorescent phallotoxin, a tool for the visualization of cellular actin. Proc. Natl. Acad. Sci. USA 1979, 76, 4498-4502.
  • 11. Rahmatullah M., Boyde T.R.: Improvements in the determination of urea using diacetyl monoxime; methods with and without deproteinisation. Clin. Chim. Acta 1980, 107, 3-9.
  • 12. Stange J., Mitzner S.R., Risler T. et al.: Molecular adsorbent recycling system (MARS): clinical results of a new membrane-based blood purification system for bioartificial liver support. Artif. Organs. 1999, 23, 319-330.
  • 13. Malchesky P.S.: Nonbiological liver support: historic overview. Artif. Organs. 1994, 18, 342-347.
  • 14. Javitt N.B.: Hep G2 cells as a resource for metabolic studies: lipoprotein, cholesterol, and bile acids. Faseb. J. 1990, 4, 161-168.
  • 15. Nyberg S.L., Remmel R.P., Mann H.J. et al.: Primary hepatocytes outperform Hep G2 cells as the source of biotransformation functions in a bioartificial liver. Ann. Surg. 1994, 220, 59-67.
  • 16. Enosawa S., Miyashita T., Suzuki S. et al.: Long-term culture of glutamine synthetase-transfected HepG2 cells in circulatory flow bioreactor for development of a bioartificial liver. Cell Transplant. 2000, 9, 711-715.
  • 17. Khalil M., Shariat-Panahi A., Tootle R. et al.: Human hepatocyte cell lines proliferating as cohesive spheroid colonies in alginate markedly upregulate both synthetic and detoxificatory liver function. J. Hepatol. 2001, 34, 68-77.
  • 18. Scheig R.: Evaluation of tests used to screen patients with liver disorders. Prim Care 1996, 23, 551-560.
  • 19. van der Wouden J.M., Maier O., van ISC. et al.: Membrane dynamics and the regulation of epithelial cell polarity. Int. Rev. Cytol. 2003, 226, 127-164.
  • 20. Cantz T., Nies A.T., Brom M. et al.: MRP2, a human conjugate export pump, is present and transports fluo 3 into apical vacuoles of Hep G2 cells. Am. J. Physiol. Gastrointest. Liver. Physiol. 2000, 278, G522-531.
  • 21. Nedelcheva V., Gut I.: P450 in the rat and man: methods of investigation, substrate specificities and relevance to cancer. Xenobiotica 1994, 24, 1151-1175.
  • 22. Rodriguez-Antona C., Donato M.T., Boobis A. et al.: Cytochrome P450 expression in human hepatocytes and hepatoma cell lines: molecular mechanisms that determine lower expression in cultured cells. Xenobiotica 2002, 32, 505-520.
  • 23. Uludag H., Sefton M.V.: Microencapsulated human hepatoma (HepG2) cells: in vitro growth and protein release. J. Biomed. Mater. Res. 1993, 27, 1213-1224.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0030-0031
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.