Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | Vol. 26, no. 3 | 15-32
Tytuł artykułu

Two-dimensional optimization of Bayesian algorithms with bandlimited basis functions

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper describes implementation of controlled random search procedure employed to optimize and evaluate Bayesian image reconstructions algorithms with bandlimited basis functions. Median root prior (MRP) and its generalizations, i.e. the L-filter and hybrid MRP were optimized and compared to the Huber penalty. The coefficient controlling amount/weight of the penalty and parameter controlling width ofthe bandlimited basis functions were optimized for different amounts of noise in the data. The reconstruction methods were accelerated using ordered subsets principle. Taking into account quantitative accuracy of the reconstructions, basic MRP with bandlimited basis functions is a practical altemative to the L-filter or hybrid MRP.
Wydawca

Rocznik
Strony
15-32
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wykr.
Twórcy
  • Faculty of Electrical Engineering, Szczecin University of Technology, ul. Piastów 17, 70-310 Szczecin, Poland, wojciech.chlewicki@ps.pl
Bibliografia
  • 1. Lewitt R., Matej S.: Overview of methods for image reconstruction from projections in emission computed tomography. Proc. of the IEEE 2003, 91, 1588-1611.
  • 2. Kak A. C., Slaney M.: Principles of Computerized Tomographic Imaging, Philadelphia, PA: SIAM 2001.
  • 3. Shepp L. A., Vardi Y.: Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imag. 1982, MI-1, 113-122.
  • 4. Veklerov E., Llacer L.: Stopping rule for the MLE algorithm based on statistical hypothesis testing. IEEE Trans. Med. Imag. 1987, MI-6, 313-319.
  • 5. Liow J., Strother S. C.: The convergence of object dependent resolution in maximum likelihood based tomographic reconstruction. Phys. Med. Biol. 1993, 38, 55-70.
  • 6. Snyder D., Miller M.: The use of sieves to stabilize images produced with the EM algorithm for emission tomography. IEEE Trans. Nucl. Sci. 1985, 32, 3864-3871.
  • 7. Green P. J.: Bayesian reconstruction from emission tomography data using a modified EM algorithm. IEEE Trans. Med. Imag 1990, 9, 84-93.
  • 8. Alenius S., Ruotsalainen U.: Bayesian image reconstruction for emission tomography based on median root prior. Eur. J. Nucl. Med. 1997, 24, 258-265.
  • 9. Bettinardi V., Alenius S., Numminen P., Teras M., Gilardi M., Fazio F., Ruotsalainen U.: Implementation and evaluation of an ordered subsets reconstruction algorithm for transmission PET studies using median root prior and inter-update median filtering, Eur. J. Nucl. Med. 2003, 30, 222-231.
  • 10. Bettinardi V., Pagani E., Gilardi M., Alenius S., Thielemans K., Teras M., Fazio F.: Implementation and evaluation of a 3D one-step late reconstruction algorithm for 3D positron emission tomography brain studies using median root prior. Eur. J. Nucl. Med. 2002, 29, 7-18.
  • 11. Kontaxakis G., Strauss L., Thireou T., Ledesma-Carbayo M., Santos A., Pavlopoulos S.: Iterative image reconstruction for clinical PET using ordered subsets, median root prior, and a web-based interface. Molecular Imag. and Biol. 2002, 4, 219-231.
  • 12. Sohlberg A.: Ruotsalainen U., Watabe H., Iida H., Kuikka J.: Accelerated median root prior reconstruction for pinhole single-photon emission tomography (SPET). Phys. Med. Biol. 2003, 48, 1957-1969.
  • 13. Seret A.: Median root prior and ordered subsets in Bayesian image reconstruction of single-photon emission tomography. Eur. J. Nucl. Med. 1998, 25, 215-219.
  • 14. Alenius S., Ruotsalainen U.: Generalization of median root prior reconstruction. IEEE Trans. Med. Imag. 2002, 21, 1413-1420.
  • 15. Schweiger M., Arridge S.: Image reconstruction in optical tomography using local basis functions. Jour. of Electronic Imag. 2003, 12, 583 -593.
  • 16. Hanson K. M., Wecksung G. W.: Local basis-function approach to computed tomography. Applied Optics 1985, 24, 4028-4039.
  • 17. Matej S., Herman G. T., Narayan T. K., Furuie S. S., Lewitt R., Kinahan P. E.: Evaluation of task-oriented performance of several fully 3D PET reconstruction algorithms. Phys. Med. Biol. 1994, 39, 355-367.
  • 18. Chlewicki W., Jaskula M.: Image representation in iterative image reconstruction based on polynomial windows. Proc. IC-SES, Poznań, Poland, 2004, 297-300.
  • 19. Lewitt R. M.: Multidimensional digital image representation using generalized Kaiser-Bessel window functions, J. Opt. Soc. Am. A. 1990, 7, 1834-1846.
  • 20. Lewitt R. M.: Alternatives to voxels for image representation in iterative reconstruction algorithms. Phys. Med. Biol. 1992, 37, 705-716.
  • 21. Furuie S., Herman G., Narayan T., Kinahan P., Karp J., Lewitt R., Matej S.: A methodology for testing for statistically significant differences between truly 3D PET reconstruction algorithms. Phys. Med. Biol. 1994, 39, 341-354.
  • 22. Price W. L.: Global optimization by controlled random search, J. Opt. Theor. and Appl. 1983, 40, 333-348.
  • 23. Klepper O. and Rouse D.I.: A procedure to reduce parameter uncertainty for complex models by comparison with real system output illustrated on a potato growth model. Agricultural Systems 1991, 36, 375-395.
  • 24. Donaire J. G., Garcia I.: On using global optimization to obtain better performance of a MART algorithm in 3D X-ray tomography, Jour. of Imag. Sci. Technol. 2002, 46, 247-256.
  • 25. Donaire J., Ortigosa P., Garcia I.: Evaluation of the performance of MART algorithm using blobs. Proc. IASTED International Conference on Signal and Image Processing, 1998.
  • 26. Garcia I., Ortigosa P., Casado L., Herman G., Matej S.: Developments in Global Optimization, editor Bonze J.M., Kluwer Academic Publisher, 1997, Ch. Multidimensional optimization in image reconstruction from projections, 289-299.
  • 27. Hendrix E. M. T.: Global Optimization at Work, PhD thesis, Wageningen Agricultural University, 1998.
  • 28. Klepper O., Hendrix E. M. T.: A method for robust calibration of ecological models under different types of uncertainty, Ecological Modelling 1994, 74, 161-182.
  • 29. Torn A., Zilinskas A.: Global optimization. Lecture Notes in Computer Science 350. Springer, Berlin, 1989.
  • 30. Ozdamar L., Demirhan M.: Experiments with new stochastic global optimization search techniques, Computers & Operations Research, 2000, 27, 841-865.
  • 31. Qi J.: Analysis of lesion detectability in Bayesian emission reconstruction with nonstationary object variability, IEEE Trans. Med. Imag. 2004, 23, 321-329.
  • 32. Chlewicki W., Hermansen F., Hansen S.: Noise reduction and convergence of Bayesian algorithms with blobs based on the Huber function and median root prior, Phys. Med. Biol. 2004, 49, 4717-4730.
  • 33. Mueller K., Yagel R., Wheller J.: Fast implementations of algebraic methods for the 3D reconstruction from cone-beam data. IEEE Trans. Med. Imag. 1999, 18, 538-547.
  • 34. Matej S., Lewitt R. M.: Practical considerations for 3-D image reconstruction using spherically symmetric volume elements, IEEE Trans. Med. Imag. 1996, 15, 68-78.
  • 35. Hudson H. M., Larkin R. S.: Accelerated image reconstruction using ordered subsets of projection data, IEEE Tran. Med. Imag. 1994, 13, 601-609.
  • 36. Huber P. J.: Robust Statistics, Wiley, New York 1981.
  • 37. Herman G.T.: Image Reconstruction from Projections - The fundamentals of Computerized Tomography (New York: Academic), 1980.
  • 38. Lee S.: Ordered subsets Bayesian tomographic reconstruction using 2-D smoothing splines as priors, Comp. Meth. Pro. Biomed. 2003, 72, 27-42.
  • 39. Mueller K., Yagel R., Cornhill J.: The weighted distance scheme: A globally optimizing projection ordering method for the algebraic reconstruction technique (ART), IEEE Trans. Med. Imag. 1997, 16, 223-230.
  • 40. Hendrix E. M. T., Ortigosa P. M., Garcia I.: On success rates for controlled random search, Jour. Of Glob. Opt. 2001, 21, 239-263.
  • 41. De Pierro A. R.: A modified expectation maximization algorithm for penalized likelihood estimation in emission tomography, IEEE Trans. Med. Imag. 1995, 14, 132-137.
  • 42. Anderson J. M. M., Mair B. A., Rao M., Wu C.: Weighted least-squares reconstruction methods for positron emission tomography, IEEE Trans. Med. Imag. 1997, 16, 159-165.
  • 43. Daube-Witherspoon M., Muehllehner G.: An iterative image reconstruction algorithm suitable for volume ECT, IEEE Trans. Med. Imaging 1986, 5, 16-22.
  • 44. Fessler J. A., Hero A. O.: Space-alternating generalized expectation-maximization algorithm, IEEE Trans. Med. Imag. 1994, 42, 2664-2677.
  • 45. Hsiao I., Rangarajan A., Gindi G.: A new convex edge-preserving median prior with applications to tomography, IEEE Tran. Med. Imag. 2003, 22, 580-585.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0030-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.