Warianty tytułu
Języki publikacji
Abstrakty
The problem of identification of continuous, uncertain nonlinear systems in the presence of bounded disturbances is implemented using dynamic neural networks. The proposed neural identifier guarantees a bound for the state estimation error. This bound turns out to be a linear combination of internal and external uncertainty levels. The neural net weights are updated on-line by a learning algorithm based on the sliding mode technique. To the best of the authors' knowledge, such a learning scheme is proposed for dynamic neural networks for the first time. Numerical simulations illustrate its effectiveness, even for highly nonlinear systems in the presence of important disturbances.
Czasopismo
Rocznik
Tom
Strony
135-144
Opis fizyczny
Bibliogr. 16 poz., wykr.
Twórcy
autor
autor
autor
autor
- CINVESTAV-IPN, Seccion de Control Automatico, Av. IPN 2508, A. P. 14-740, Mexico D. F., 07000, apoznyak@ctrl.cinvestaw.mx.
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0021-0009