Czasopismo
2010
|
Nr 8, nr 8
|
175-175
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Feasible separation regions for homogeneous ternary mixtures
Języki publikacji
Abstrakty
W procesie syntezy sekwencji kolumn rektyfikacyjnych niezbędne jest narzędzie do szybkiej identyfikacji rejonów wykonalnych rozdziałów, tzn. zbiorów reprezentujących skład możliwych do uzyskania produktów dla zadanego surowca. Rejony wykonalnych rozdziałów mieszanin azeotropowych były rozważane w wielu pracach (ich wyniki omówiono w monografii), lecz kompletne rozwiązanie w przypadku trójskładnikowej, homogenicznej mieszaniny azeotropowej zawierającej granice destylacyjne nie zostało do tej pory znalezione. W monografii podano nowy, ogólny sposób konstrukcji rejonu wykonalnych rozdziałów dla wszystkich podstawowych kształtów linii destylacyjnych. Rozważania oparte są na zależnościach pomiędzy różnymi rodzajami zbiorów składu produktów oraz na szczegółowej analizie brzegu jednego z nich, który jest kluczowym elementem w konstrukcji rejonu wykonalnych rozdziałów. Na tej podstawie, stosując model geometryczny kolumny rektyfikacyjnej pracującej w stanie ustalonym, określono związki pomiędzy wartościami parametrów operacyjnych i parametrów kolumny oraz poszczególnymi elementami tworzącymi brzeg rejonu wykonalnych rozdziałów. Dokonano identyfikacji poszczególnych elementów tego brzegu oraz uogólniono pojęcie limitu destylacyjnego (podano matematyczne zależności opisujące go oraz sformułowano algorytm jego wyznaczania), które zapewnia poprawność konstrukcji dla różnego rodzaju skraplaczy i wyparek oraz różnych stanów termodynamicznych surowca. Opierając się na otrzymanej konstrukcji, sformułowano algorytm wyznaczania rejonów wykonalnych rozdziałów dla mieszanin azeotropowych i zeotropowych, uwzględniający nakładanie się obszarów destylacyjnych oraz możliwość przekraczania granic destylacyjnych.
The work presents a new method for finding feasible separation region for non-ideal ternary mixtures. The method is valid for all Serafimov's classes of mixture except for class 3.1-3a, but such mixture is not found in real world until now. The method may be used for distillation column equipped with partial or total condenser and partial or total reboiler. Feed stream may be saturated liquid, saturated vapor or a mixture of vapor and liquid being in equilibrium. A possibility of crossing distillation boundaries is taken into account. Computer simulations were used to verity the method. An algorithm for determining feasible separation regions is formulated also. The method is based on analysis of product composition sets defined for different suites of constant operating and column parameters. The analysis showed that one of product composition set, namely a fixed distribution set, is basic element of feasible composition region. A border structure of fixed distribution set has determined also. Elements of the border are connected to some limiting working modes of distillation column. Geometric considerations, based on geometric model of distillation column and the shape of distillation lines, allows determining relative location of the border elements of fixed distribution set to some kind of feed distillation lines. It enabled to study, how the change of column parameters influence fixed distribution set and next to establishes that feasible separation region consists of two fixed distribution sets for rectifier and stripper with infinite number of theoretical stages. Some border elements of fixed distribution set, which are connected to sloppy splits, were not known until now. They have been called generalized distillation limit. Their mathematical relations have been founded and algorithm for their determining has been formulated. Generalized distillation limit depends on thermodynamic state of the feed, condenser type and stripper type. It is important element of the method for finding feasible separation region. It can intersect distillation boundary. In such case, distillation boundary does not demarcate two distillation regions. It means, distillate and bottom compositions may be located in two different distillation regions outside their common area. It creates possibilities for new solutions of separation processes. The behavior of composition profiles for azeotropic mixtures has been studied. Relations between different pairs of distillation boundaries in the mixture have been founded. An algorithm determining primary distillation regions has been formulated. It take into account overlapping of distillation regions and is valid for all Serafimov's classes of mixture except for class 3.1-3a. It is used in algorithm for finding feasible separation region.
Rocznik
Tom
Strony
175-175
Opis fizyczny
s., Bibliogr. 114 poz.
Twórcy
autor
- Wydział Chemiczny, Politechnika Wrocławska, ul. Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, lechoslaw.krolikowski@pwr.wroc.pl
Bibliografia
- [1] Acrivos A., Amundson N.R., On the steady state fractionation of multicomponent and complex mixtures in an ideal cascades. 5. The extension to packed columns, Chem. Eng. Sei., 1955, 4, 206-208.
- [2] Balashov M.I., Grishunin A.V., Serafimov L.A., Configuration of boundaries of continuous distillation regions for ternary mixtures, Uchenye zapiski, 1970, 1(2), 121-126, Moscow Institute of Fine Chemical Technology.
- [3] Baur R., Krishna R., Taylor R., Influence of mass transfer in distillation: Feasibility and Design, AIChE J., 2005, 51, 854-866.
- [4] Bausa J., Watzdorf R., Marquardt W., Shortcut Methods for Nonideal Multicomponent Distillation: I. Simple Columns, AIChE I, 1998, 44, 2181-2198.
- [5] Bekiaris N., Meski G.A., Radu CM., Morari M., Multiple Steady State in Homogeneous Azeotropic Distillation, Ind. Eng. Chem. Res., 1993, 31, 2023-2038.
- [6] Bekiaris N., Meski G.A., Morari M., Multiple Steady State in Heterogeneous Azeotropic Distillation, Ind. Eng. Chem. Res., 1996, 35, 207-227.
- [7] Bekiaris N., Morari M., Multiple Steady State in Heterogeneous Azeotropic Distillation: ∞/∞ Predictions, Extensions, and Implications for Design, Synthesis, and Simulation, Ind. Eng. Chem. Res., 1996, 35, 4264-4280.
- [8] Bellows M., Lucia A., The Geometry of Separation Boundaries: Four-Component Mixtures, AIChE J.,2007, 53(7), 1770-1778.
- [9] Bonilla CF., Graphical design of continuous distillation columns for ternary systems, Trans. AIChE I, 1941,37, 669-684.
- [10] Borges CR., Elementary Topology and Applications, Singapore: World Scientific Publish. Co., 2000.
- [11] Bronstein I.N., Semendjajew K.A., Musil G., Muhlig H., Taschenbuch der Mathematik, Thum und Frankfurt am Main, Verlag Harri Deutch GmbH, 2001.
- [12] Brüggemann S., Marquardt W., Shortcut Methods for Nonideal Multicomponent Distillation: 3. Extractive Distillation Columns, AIChE J., 2004, 50, 1129-1149.
- [13] Castillo F.J.L., Towler G.P., Influence of multicomponent mass transfer on homogenous azeotropic distillation, Chem. Eng. Sei., 1998, 53, 963-967.
- [14] Castillo F.J.L., Thong D.Y.C, Towler G.P., Homogeneous Azeotropic Distillation. 1. Design Procedure for Single-Feed Columns at Nontotal Reflux, Ind. Eng. Chem. Res., 1998, 37, 987-997.
- [15] Castillo F.J.L., Thong D.Y.C, Towler G.P., Homogeneous Azeotropic Distillation. 2. Design Procedure for Sequences of Columns, Ind. Eng. Chem. Res., 1998, 37, 998-1008.
- [16] Davydyan A.G., Malone M.F., Doherty M.F., Boundary modes in a single feed distillation column for the separation of azeotropic mixtures, Theor. Found. Chem. Eng., 1997, 31, 327-338, [367-379].
- [17] Doherty M.F., Perkins J.D., On the dynamics of distillation of multicomponent non-reacting, homogeneous mixtures. I. The simple distillation of multicomponent non-reacting, homogeneous liquid mixtures, Chem. Eng. Sei., 1978, 33, 282-301.
- [18] Doherty M.F., Perkins J.D., On the dynamics of distillation of multicomponent non-reacting, homogeneous mixtures III. The topological structure of ternary residue curve map, Chem. Eng. Sei., 1979, 34, 1401-1414.
- [19] Doherty M.F., Caldarola G.A., Design and Synthesis of Homogeneous Azeotropic Distillations. 3. The Sequencing of Columns for Azeotropic and Extractive Distillations, Ind. Eng. Chem. Fundam., 1985, 24(4), 474-485.
- [20] Ewell R.H., Welch L.M., Rectification in ternary systems containing binary azeotropes, Ind. Eng.Chem., 1945,37, 1224-1231.
- [21] Fidkowski Z.T., Doherty M.F., Malone M.F., Feasibility of separation for distillation of nonideal ternary mixtures, AIChE J., 1993, 39, 1303-1321.
- [22] Gmehling J., Onken U., Vapor-Liquid Equilibrium Data Collection, Vol. I/la, Frankfurt,DECHEMA Chemistry Data Series, 1981.
- [23] Gmehling J., Onken U., Vapor-Liquid Equilibrium Data Collection, Vol. I/lb, Frankfurt,DECHEMA Chemistry Data Series, 1988.
- [24] Gmehling J., Onken U., Vapor-Liquid Equilibrium Data Collection, Vol. I/2a, Frankfurt,DECHEMA Chemistry Data Series, 1977.
- [25] Gmehling J., Onken U., Vapor-Liquid Equilibrium Data Collection, Vol. I/2b, Frankfurt,DECHEMA Chemistry Data Series, 1990.
- [26] Gmehling J., Onken U., Vapor-Liquid Equilibrium Data Collection, Vol. I/2c, Frankfurt,DECHEMA Chemistry Data Series, 1982.
- [27] Gmehling J., Onken U., Vapor-Liquid Equilibrium Data Collection, Vol. I/2e, Frankfurt,DECHEMA Chemistry Data Series, 1988.
- [28] Gmehling J., Onken U., Vapor-Liquid Equilibrium Data Collection, Vol. 1/3+4, Frankfurt,DECHEMA Chemistry Data Series, 1979.
- [29] Gmehling J., Onken U., Vapor-Liquid Equilibrium Data Collection, Vol. I/6a, Frankfurt,DECHEMA Chemistry Data Series, 1980.
- [30] Gmehling J., Onken U., Vapor-Liquid Equilibrium Data Collection, Vol. I/6b, Frankfurt,DECHEMA Chemistry Data Series, 1980.
- [31] Gmehling J, Onken U., Vapor-Liquid Equilibrium Data Collection, Vol. 1/7, Frankfurt, DECHEMA Chemistry Data Series, 1980.
- [32] Gurikov Y.V., Some questions concerning the structure of two phase vapor - liquid equilibrium diagrams of ternary homogenous solutions. J. Phys. Chem. (USSR) 1958;32(9): 1980-1996.
- [33] Guttinger T.E., Dorn C, Morari M., Experimental Study of Multiple Steady State in Homogeneous Azeotropic Distillation. Ind. Eng. Chem. Res. 1997;3:794-802.
- [34] Hilmen E.K., Kiva V.N., Skogestad S., Topology of Ternary VLE Diagrams: Elementary Cells,AIChE I, 2002, 48, 752-759.
- [35] Jänich K., Topology, Berlin, Springer-Verlag, 1984.
- [36] Julka V., Doherty M.F., Geometric behavior and minimum flows for nonideal muticomponent distillation, Chem. Eng. Sei., 1990, 45, 1801-1822.
- [37] Julka V., Doherty M.F., Geometric nonlinear analysis of multicomponent nonideal distillation. A simple computer-aided design procedure, Chem. Eng. Sei., 1993, 48, 1367-1391.
- [38] Jobson M., Hildebrandt D., Glasser D., Attainable products for the vapor - liquid separation of homogenous ternary mixtures, Chem. Eng. J., 1995, 59, 51-70.
- [39] Kirchbaum E., Distillation and Rectification, Brooklyn: Chemistry Publish. Co. Inc., 1948.
- [40] Kiva V.N., Private letter. 2006.
- [41] Kiva V.N., Private letter. 2010.
- [42] Kiva V.N., Alukhanova B.A., Multiple steady state of distillation and its realisation, Computers Chem. Eng., 1997, 21, 5531-5546.
- [43] Kiva V.N., Hilmen E.K., Skogestad S., Azeotropic phase equilibrium diagrams: a survey, Chem. Eng. Sci., 2003, 58, 1903-1953.
- [44] Kiva V.N., Królikowski L.J., Product composition region in multicomponent distillation, Inż. Chem. i Proc, 2001, 22(3C), 723-728.
- [45] Kiva V.N., Marchenko I.M., Garber Y.N., Possible Compositions of the Products of Ternary Mixture Rectification with Binary Saddle, Theor. Found. Chem. Eng., 1993, 27(4), 336-342 [373-380].
- [46] Kiva V.N., Serafimov L.A., Set-theoretical analysis of batch distillation, J. Phys. Chem. (USSR), 1976, 50(l),51-54 [54-57].
- [47] Koehler J., Aguirre P., Blass E., Minimum reflux calculation for nonideal mixtures using the reversible distillation model, Chem. Eng. Sci., 1991, 46, 3007-3021.
- [48] Kogan W.B., Azeotropic and Extractive Distillation, Leningrad: Chemistry Publish. Co., 1971 (in Russian).
- [49] Kondratev A.A., Frolova L.N., Serafimov L.A., Special cases in rectification of nonideal mixtures, Theor. Found. Chem. Eng., 1975, 9, 323-332.
- [50] Konig D., Theory of Finite and Infinite Graphs, Boston, Birkhauser, 1990.
- [51] Królikowski L.J., Distillation boundaries created by ternary azeotropes, Inż. Chem. i Proc, 2001, 22(3C), 807-812 (in Polish).
- [52] Królikowski L.J., Distillation regions for nonideal ternary mixtures, International Conference on Distillation and Absorption, September 30-October 2, 2002, Baden-Baden, Germany, Conference Proceedings, ISBN 3-931384-27-3, Section 6-19.
- [53] Królikowski L.J., Determination of distillation regions for ternary azeotropic mixture, 4th Symposium on Distillation, Absorption and Extraction, 6-8 October 2003, Szklarska Poręba, Proceedings 34-50 (in Polish).
- [54] Królikowski L.J., Algorithm for determination of distillation regions for ternary mixtures, Chemical and Process Engineering, 2004, 25, 1195-1200 (in Polish).
- [55] Królikowski LJ. Determination of distillation regions for non-ideal ternary mixtures, AIChE J., 2006, 52, 532-544.
- [56] Królikowski L.J., Feasible separation regions for S-shaped distillation lines, Chemical and Process Engineering, 2007, 28, 705-712.
- [57] Królikowski L.J., Feasible separation regions for areas with S-shaped distillation lines, XIX Polish Conference of Chemical and Process Engineering, 3-7 September 2007, Rzeszów, Poland, Conference Proceedings, Vol. 3, 91-94 (in Polish).
- [58] Królikowski L.J., Feasible Separation Regions for Ternary Mixtures with S-shaped Distillation Lines, 19lh European Symposium on Computer Aided Process Engineering - ESCAPE 19, 14-17 June 2009, Kraków, Computer Aided Chemical Engineering, Vol. 26, 751-765, Elsevier.
- [59] Królikowski L.J., Davydian A.G., Malone M.F., Doherty M.F., Distillation Boundaries for Ternary Azeotropic Mixture, XVI Polish Conference of Chemical and Process Engineering, 21-25 September 1998, Kraków - Muszyna, Poland, Conference Proceedings, Vol. 1, 180-185 (in Polish).
- [60] Laroche L., Bekiaris N., Andersen H.W., Morari M., Homogenous azeotropic distillation: separability and flowsheet synthesis, Ind. Eng. Chem. Res., 1992, 31, 2190-2209.
- [61] Laroche L., Bekiaris N., Andersen H.W., Morari M., The curious behavior of homogenous azeotropic distillation - Implication for entraîner selection, AIChE J., 1992, 38, 1309-1328.
- [62] Levy S.G., Van Dogen D.B., Doherty M.F., Design and synthesis of homogeneous azeotropic distillations. 2. Minimum reflux calculations for nonideal and azeotropic columns, Ind. Eng. Chem. Fundam., 1985,24, 463-474.
- [63] Lucia A., Taylor R., The Geometry of Separation Boundaries I: Basic Theory and Numerical Support, AIChE J., 2006,52(2), 582-594.
- [64] Lucia A., Taylor R., The Geometry of Separation Boundaries II: Mathematical Formalism, AIChE 1,2007,53(7), 1779-1788.
- [65] Matsuyama H., Nishimura H., Topological and Thermodynamic Classification of Ternary Vapor -Liquid Equilibria, J. Chem. Eng. Japan, 1977, 10(3), 181-187.
- [66] Nikolaev N.S., Kiva V.N., Mozzhukhin A.S., Serafimov L.A., Goloborodkin S.I., Utilization of functional operators for determining the regions of continuous rectification, Theor. Found. Chem. Eng., 1979, 13(4), 418-422 [493-498].
- [67] Petlyuk F.B., Thermodynamically reversible fractionation process of multicomponent azeotropic distillation, Theor. Found. Chem. Eng., 1978, 12, 270-276.
- [68] Petlyuk F.B., Distillation Theory and Its Application to Optimal Design of Separation Units, Cambridge University Press, 2004.
- [69] Petlyuk F.B., Avetyan V.S., Investigation of Three-Component Distillation at Infinite Reflux, Theor. Found. Chem. Eng., 1971, 5,457-63 [499-510].
- [70] Petlyuk F.B., Avetyan V.S., Inyaeva G.V., Possible Compositions of the Rectification Products of Polyazeotropic Mixtures, Theor. Found. Chem. Eng., 1977, 11(2), 143-149 [177-184].
- [71] Petlyuk F.B., Serafimov L.A., Multicomponent Distillation, Theory and Design, Moscow: Chemistry Publish. Co., 1983 (in Russian).
- [72] Poellmann P., Blass E., Best products of homogeneous azeotropic distillation, Gas Separation & Purification, 1994, 8, 194-228.
- [73] Pratt H.R.C., Countercurrent Separation Processes, Amsterdam: Elsevier, 1967, 162-167.
- [74] Reshetov S.A., Zhvanetskii I.B., Orlova E.V., Modeling of Continuous Distillation of Ternary Mixtures with Phase Diagrams Containing One-Side Unity a-Lines, Theor. Found. Chem. Eng., 1999, 33, 149-155.
- [75] Rev E., Crossing of valleys, ridges, and simple boundaries by distillation in homogeneous ternary mixtures, Ind. Eng. Chem. Res., 1992, 31, 893-901.
- [76] Rooks R.E., Julka V., Doherty M.F., Malone M.F., Structure of distillation regions for multicomponent azeotropic mixtures, AIChE J., 1998, 44, 1382-1391.
- [77] Schreinemakers F.A.H., Dampfdrucke ternärer Gemische. Theoretischer Teil: Erste Abhandlung, Zeitrschrift fuer Physikalische Chemie, 1901, 36(3), 257-289 (in German).
- [78] Schreinemakers F.A.H., Dampfdrucke ternärer Gemische. Theoretischer Teil: Zweite Abhandlung, Zeitrschrift fuer Physikalische Chemie, 1901, 36(4), 413-449 (in German).
- [79] Schreinemakers F.A.H., Dampfdrucke ternärer Gemische. Theoretischer Teil: Dritte Abhandlung, Zeitrschrift fuer Physikalische Chemie, 1901, 36(6), 710-740 (in German).
- [80] Seader J.D., Kurtyka Z.M., in Perry R.H., Green D.W., Maloney J.O. eds., Perry's Chemical Engineer's Handbook, 6lh ed., McGraw-Hill, 1984, Section 13, p. 58.
- [81] Serafimov L.A., Swiçtoslawski W. (ed.), Azeotropy and Polyazeotropy, Moscow, Chemistry Publishing Co., 1968, Chapter 21, 186-224.
- [82] Serafimov L.A., The azeotropic rule and the classification of multicomponent mixtures. II. The form [pattern] of distillation lines [residue curves] near four-component singular points, J. Phys. Chem., (USSR), 1968,42(1), 130-131 [248-252].
- [83] Serafimov L.A., The azeotropic rule and the classification of multicomponent mixtures. III. Distribution of singular points in the phase diagram for liquid-vapor equilibrium in four-component mixtures, J. Phys. Chem., (USSR), 1968, 42(1), 132-135 [252-256].
- [84] Serafimov L.A., The azeotropic rule and the classification of multicomponent mixtures. IV. Pricipal equations for the calculation of liquid-vapor phase equilibrium diagrams for four-component mixtures, J. Phys. Chem., (USSR), 1969, 43(3), 621-624.
- [85] Serafimov L.A., The azeotropic rule and the classification of multicomponent mixtures. V. Analysis of liquid-vapor phase equilibrium diagrams for quaternary mixtures, J. Phys. Chem., (USSR), 1969, 43(5), 749-751 [1343-1346].
- [86] Serafimov L.A., The azeotropic rule and the classification of multicomponent mixtures. VII. Diagrams for ternary mixtures, J. Phys. Chem., (USSR), 1970, 44(4), 567-571 [1021-1027].
- [87] Serafimov L.A., Zharov V.T., Timofeev V.S., Rectification of multicomponent mixtures. I. Topological analysis of liquid - vapor phase equilibrium diagrams, Acta Chim. Acad. Sci. Hungaricae, 1971,69(4), 383-396.
- [88] Serafimov L.A., Timofeev V.S., Balashov M.I., Rectification of multicomponent mixtures. II. Local and general characteristics of the trajectories of rectification processes at infinite reflux ratio, Acta Chim. Acad. Sci. Hungaricae, 1973, 75(2), 193-211.
- [89] Serafimov LA., Kuchanov S.I. (ed.), Mathematical Methods in Contemporary Chemistry, Gordon and Breach Publishers, 1996, Chapter 10, 557-604.
- [90] Shiras R.N., Hanson D.N., Gibson CH., Calculation of Minimum Reflux in Distillation Columns, Ind. Chem. Eng., 1950, 42(5), 871-876.
- [91] Stichlmair J.G., Separation of ternary mixture by rectification, International Chemical Engineering, 1991,31(3), 423-133.
- [92] Stichlmair J.G., Distillation and Rectification, Ullmann's Encyclopedia of Industrial Chemistry, Vol. 10, Wiley-VCH, 2003.
- [93] Stichlmair J.G., Fair J.R., Distillation. Principles and Practices, Wiley-VCH, 1998.
- [94] Stichlmair J.G., Fair J.R., Bravo J.L., Separation of azeotropic mixtures via enhanced distillation, Chem. Eng. Prog., 1989, 85(1), 63-69.
- [95] Stichlmair J.G., Herguijuela J.-R., Separation regions and processes of zeotropic and azeotropic ternary distillation, AIChE J., 1992, 38, 1525-1535.
- [96] Stichlmair J.G., Offers H, Potthoff R.W., Minimum Reflux and Minimum Reboil in Ternary Distillation, Ind. Eng. Chem. Res., 1993, 32, 2438-2445.
- [97] Taylor R., Baur R., Krishna R., Influence of mass transfer in distillation: Residue curves and total reflux, AIChE J., 2004, 50, 3134-3148.
- [98] Thormann K, Destillieren und Rektifizieren, Leipzig, Verlag von Otto Spamer, 1928.
- [99] Underwood A.J.V., Fractional Distillation of Multicomponent Mixtures, Chem. Eng. Prog., 1948, 55(8), 603-614.
- [100] Van Dongen D.B., Doherty M.F., Design and synthesis of homogeneous azeotropic distillation. 1. Problem formulation for single column, Ind. Eng. Chem. Fundam., 1985, 24, 454—463.
- [101] Varma A., Morbidelli M., Mathematical Methods in Chemical Engineering, New York, Oxford University Press, 1997.
- [102] Verhulst F., Nonlinear Differential Equations and Dynamical Systems, Berlin, Springer-Verlag, 2000.
- [103] Vogelpohl A., On the Relation between Ideal and Real Mixtures in Multicomponent Distillation, Chem. Eng. Technol., 2002, 25(9), 869-873.
- [104] Wahnschafft O.M., Koehler J.W., Blass E., Westerberg W., The product composition regions of single-feed azeotropic distillation columns, Ind. Eng. Chem. Res., 1992, 31, 2345-2362.
- [105] Wahnschaffi O.M., Westerberg A.W., The product composition regions of Azeotropic Columns. 2. Separability in Two-Feed Columns and Entraîner Selection, Ind. Eng. Chem. Res., 1993, 32, 1108-1120.
- [106] Watzdorf R., Bausa J., Marquardt W., Shortcut Methods for Nonideal Multicomponent Distillation. 2. Complex Columns, AIChE J., 1999, 45, 1615-1628.
- [107] Westerberg A.W., Wahnschafft O.M., The Synthesis of Distillation-Based Separation Systems, Adv. Chem. Eng., 1996, 23, 64-170.
- [108] Widagdo S., Seider W.D., Azeotropic Distillation, AIChE J., 1996, 42, 95-130.
- [109] Wilson R.J., Introduction to Graph Theory, Harlow, Pearson Education Limited, 1996.
- [110] Zharov V.T., Free evaporation of homogeneous multicomponent solutions, J. Phys. Chem., (USSR), 1967,41(11), 2865-2872.
- [111] Zharov V.T., Phase transformations and rectification of multicomponent solutions, J. Appl. Chem., (USSR), 1968, 41(12), 2530-2536 [2688-2695].
- [112] Zharov V.T., Free evaporation of homogeneous multicomponent solutions. II. Four component systems, J. Phys. Chem., (USSR), 1968,42(1), 58-61 [116-122].
- [113] Zharov V.T., Phase representations [Distillation lines] and rectification of multicomponent solutions, J. Appl. Chem., (USSR), 1969, 42(1), 94-98 [111-117].
- [114] Zharov V.T., Serafimov L.A., Physical - Chemical Foundation of Distillation and Rectification, (in Russian), Leningrad, Chemistry Publishing Co, 1975.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW8-0016-0014