Warianty tytułu
Języki publikacji
Abstrakty
PbO–MoO3–B2O3 glasses containing various proportions of NiO (ranging from 0 to 1.0 mol %) have been prepared. A number of methods viz., differential thermal analysis, spectroscopic (IR and UV-Vis optical absorption, and ESR spectra) and dielectric properties (ĺ', tanä, a.c. conductivity óac over a range of frequencies and temperatures) of these glasses has been employed in studies. The results of differential thermal analysis suggest a high glass forming ability for the glass containing 0.6 mol % of NiO. The studies of UV-Vis and IR spectra show that nickel ions occupy both tetrahedral and octahedral positions in the glass network with the dominance of the tetrahedral positions when the concentration of NiO is below 0.6 mol % in the glass matrix. The analysis of the results of studies of dielectric properties reveals that there is an increase in the rigidity and the dielectric breakdown strength of the glass when the concentration of NiO is around 0.6 mol %.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
527--545
Opis fizyczny
Bibliogr. 53 poz.
Twórcy
autor
autor
autor
autor
- Department of Physics, Acharya Nagarjuna University P.G. Centre, Nuzvid-521 201, A.P. India, nvr8@redifmail.com
Bibliografia
- [1] DEL NERY S.M., PONTUSUCHKA W.M., ISOTANI S., ROUSE C.G., Phys. Rev. B, 49 (1994), 3760.
- [2] DA ROCHA M.S.F., PONTUSUCHKA W.M., BLAK A.R., J. Non-Cryst. Solids, 321 (2003), 29.
- [3] MOGUS- MILANKOVIC A., SANTIC A., GAJOVIC A., DAY D E., J. Non-Cryst. Solids, 325 (2003), 76.
- [4] SIMON S., NICULA A.C., J. Non-Cryst. Solids, 57 (1983), 23.
- [5] LYNEH J.F., SAYER M., SEGEL S.L., ROSENBLATT G., J. Appl. Phys., 42 (1971), 2587.
- [6] CHOWDARI B.V.R., TAN K.L., LING F., Solid State Ionics, 113 (1998), 711.
- [7] BOUDLICH D., HADDAD M., KLIAVA J., J. Non-Cryst. Solids, 224 (1998),151.
- [8] DAS B.B., AMBIKA R., Chem. Phys. Lett., 370 (2003), 670.
- [9] CHOWDARI B.V.R., PRAMODA KUMARI P., Solid State Ionics, 113 (1998),665.
- [10] BIH L., OMARI E.L., REAU J.M., YACOUBI A., NADIRI A., HADDAD M., Mater. Lett., 50 (2001), 308.
- [11] ELKHOLY M.M., El-MALLAWANY R.A., Mater. Chem. Phys., 40 (1995), 63.
- [12] MOGUS-MILANKOVIC A., SANTIC A., KARABULUT M., DAY D.E., J. Non-Cryst. Solids, 330 (2003), 128.
- [13] GOVINARAJU G., BASKARAN N., SHAHI K., MANORAVI P., Solid State Ionics, 76 (1995), 47.
- [14] ARDELEAN I., Mod Phys Lett, 16 (2001), 523.
- [15] KUNDU T.K., CHAKRAVORTY D.K., J. Mater Res., 14 (1999), 1069.
- [16] DESOKY El., MOHAMED S.M., KASHIF I., J. Mater. Sci. Mater. Electr., 10 (1999), 279.
- [17] FAROUK H M., SANAD A., J. Mater. Sci. Mater. Electr., 6 (1995), 393.
- [18] YOKOKAWA T., SHIBATA M., OOKAWA M., J. Non-Cryst. Solids, 190 (1995), 226.
- [19] KASHIF I., FAROUK H., ALY S.A., J. Mater. Sci. Mater. Electr., 2 (1991), 216.
- [20] KAMINSKII A.A., Crystalline Lasers: Physical Processes and Operating Schemes, CRC Press, Boca Raton, 1996.
- [21] ZANNONI E., CAVALLI G., BETTINELLI M., J. Phys. Chem. Solids, 60 (1999), 449.
- [22] NAGESWARA RAO P., RAGHAVAIAH B.V., KRISHNA RAO D., VEERAIAH N., J. Mater. Chem. Phys., 91 (2005), 381.
- [23] SRINIVASA Reddy M., VEERAIAH N., J. Phys. Chem. Solids, 67 (2006), 789.
- [24] AHMAD M.M., HOGARTH C.A., KHAN M.N., J. Mater. Sci., 19 (1984), 4041.
- [25] KHALIFA F.A., EL BATAL H.A., AZOOZ A., Ind. J. Pure Appl. Phys., 36 (1998), 314.
- [26] GOVINDARAJ G., BASKARAN N., SHAHI K., MANORAVI P., Solid State Ionics, 76 (1995), 47.
- [27] MACHIDA N., ECKERT H., Solid State Ionics, 107 (1998), 255.
- [28] MUTHUPARI S., PRABAKAR S., RAO K.J., J. Phys. Chem. Solids, 57 (1996), 553.
- [29] SELVARAJ U., RAO K.J., Chem. Phys., 123 (1988a), 141; J. Non-Cryst. Solids, 104 (1988), 300.
- [30] HUI-FEN WU., LIN CHUNG-CHENG, SHEN J.P., Non-Cryst. Solids, 209 (1997),76.
- [31] RAO J.L., NARENDRA G.L., LAKSMAN S.V.J., Polyhedron, 9 (1990), 1475.
- [32] RAO P.N., RAGHAVAIAH B.V., RAO D.K., VEERAIAH N., J. Lumin., 117 (2006), 53.
- [33] GOLGSTEIN A., CHIRIAC V., BECHERESCU D., J. Non-Cryst. Solids, 92 (1987), 271.
- [34] BOUDLICH D., HADDAD M., KLIAVA J., J. Non-Cryst. Solids, 224 (1998), 151.
- [35] BIH L., OMARI El., HADDAD M., REAU J.M., BOUDLICH D., YACOUBI A., NADIRI A., Solid State Ionics, 132 (2000), 71.
- [36] SRINIVASA RAO G., VEERAIAH N., J. Solid State Chem., 166 (2002), 104.
- [37] HADDAD M., NADIRI A., BIYADI A., ARCHIDI M.E., FOLGADO J.V., BELTRAN-PORT D., J. Alloys Comp., 188 (1992), 161.
- [38] IORDANOVA R., DIMITROV V., KLISSURSKI D., J. Non-Cryst. Solids, 231 (1998), 227.
- [39] KRISHNA MOHAN N., SAMBASIVA RAO K., GANDHI Y., VEERAIAH N., Physica B, 6 (2006), 166.
- [40] DURGA D. K., VEERAIAH N., J. Mater. Sci., 36 (2001), 5625.
- [41] RADHA KRISHNAN S., SRINIVAS R.S., Phys. Rev. B, 14 (1976), 6967.
- [42] BÖTTCHER C.J.F., BORDWIJK P., Theory of Electrical Polarization (Part II), Elsevier, New York 1978.
- [43] EL-DAMARAWI G., J. Phys. Cond. Matter., 7 (1995), 1557.
- [44] MONTANI R.A., FRECHERO M.A., Solid State Ionics, 158 (2003), 327.
- [45] AUSTIN I.G., MOTT N.F., Adv. Phys., 18 (1969), 657.
- [46] NAGA RAJU G., SRINIVASA RAO N., VEERAIAH N., Physica B, 373 (2006), 297.
- [47] VENKATESWARA RAO G., VEERAIAH N., Phys. Chem. Glasses, 43 (2002), 205.
- [48] SAHAYA BASKARAN G., LITTLE FLOWER G., KRISHNA RAO D., VEERAIAH N., J. Alloys Comp., 431 (2007), 303.
- [49] RAO A.V., LAXMIKANTH C., VEERAIAH N., J. Phys. Chem. Solids, 67 (2007), 2263.
- [50] ELLIOT S.R., Physics of Amorphous Materials, Longman, Essex, 1990.
- [51] BUTCHER P., HYDEN K.J., Phil. Mag., 36 (1997), 657.
- [52] POLLAK M., Phil. Mag., 23 (1971), 579.
- [53] TAREEV B., Physics of Dielectric Materials, Mir, Moscow, 1979.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW8-0006-0026