Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | Vol. 25, No. 1 | 33--43
Tytuł artykułu

Scaling of nonvolatile memories to nanoscale feature sizes

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
he market for nonvolatile memory devices is growing rapidly. Today, the vast majority of nonvolatile memory devices are based on the floating gate device which is facing serious scaling limitations. Material innovations currently under investigation to extend the scalability of floating gate devices are discussed. An alternative path is to replace the floating gate by a charge trapping material. The combination of charge trapping and localized channel hot electron injection allows storing two physically separated bits in one memory cell. The current status and prospects of charge trapping devices are reviewed, demonstrating their superior scalability. Floating gate as well as charge trapping memory cells suffer from severe performance limitations with respect to write and erase speed and endurance driving system overhead. A memory that works like random access memory and is nonvolatile would simplify system design. This, however, calls for new switching effects that are based on integrating new materials into the memory cell. An outlook to memory concepts that use ferroelectric switching, magnetic switching, phase change, or other resistive switching effects is given, illustrating how the integration of new materials may solve the limitations of today's semiconductor memory concepts.
Wydawca

Rocznik
Strony
33--43
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
autor
autor
autor
Bibliografia
  • [1] NIEBEL A., Proc. of the 20th Nonvolatile Semiconductor Memory Workshop, Monterey, California (2004), p. 14.
  • [2] BYEON D.-S., LEE S.-S., LIM Y.-H., PARK, J.-S., HAN W.-K., KWAK P.-S., KIM D.-H., CHAE D.-H., MOON S.-H., LEE S.-J., CHO H.-C., LEE J.-W., KIM M.-S., YANG J.-S., PARK Y.-W., BAE D.-W., CHOI J.-D., HUR S.-H., SUH K.-D., Proc. Int. Solid State Circuits Conference, IEEE, San Francisco (2005), p. 46.
  • [3] PAVAN P., BEZ R., OLIVO P., ZANONI E., Proc. IEEE, 85 (1997), 1248.
  • [4] LAI S., Proc. Seventh Biennial International Nonvolatile Memory Technology Conference, IEEE, Albuquerque (1998), p. 6.
  • [5] LIKHAREV K., Appl. Phys. Lett., 73 (1998), 2137.
  • [6] CASPERSON J., J. Appl. Phys., 92 (2002), 261.
  • [7] LEE W.-H., CLEMENS J.T., KELLER R.C., MANCHANDA L., VLSI Technology Digest of Technical Papers (1997), p. 117.
  • [8] LEE J.-D., SUNG-HOI H., CHOI J.-D., IEEE Electr. Device Lett., 23 (2002), 264.
  • [9] CHOI S., CHO M., HWANG H., KIM J.W., J. Appl. Phys., 94 (2003), 5408.
  • [10] BACHHOFER H., REISINGER H., BERTAGNOLLI E., VON PHILIPSBORN H., J. Appl. Phys., 89 (2001), 2791.
  • [11] LEE C.-H., PARK K.-C., KIM K., Appl. Phys. Lett., 86 (2005), 73510.
  • [12] SHIN Y., CHOI J., KANG C., LEE C., PARK K.-T., LEE J.-S., SEL J., KIM V., CHOI B., SIM J., KIM D., CHO H.-J., KIM K., IEDM Digest Techn. Papers, IEEE (2005), p. 327.
  • [13] ISHIMARU T., MATSUZAKI N., OKUYAMA Y., MINE T., WATANABE K., YUGAMI J., KUME H., ITO F., KAWASHIMA Y., SAKAI T., KANAMARU Y, ISHII Y., MIZUNO M., ISHII Y., MIZUNO M., KAMOHARA S., HASHIMOTO T., OKUYAMA K., KURODA K., KUBOTA K., IEDM Digest Techn. Papers. IEEE (2004), p. 885
  • [14] TAN Y.-N., CHIM W.-K., BYUN J.C., WEE-KIONG C., IEEE Trans. Electr. Devices 51 (2004), 1143.
  • [15] CHAN T.Y., IEEE Electr. Device Lett., 8 (1987), 93.
  • [16] EITAN B., PAVAN P., BLOOM I., ALONI E., FROMMER A., FINZ D., IEEE Electr. Device Lett., 21 (2000), 543.
  • [17] NAGEL N., OLLIGS, D., POLEI, V., PARASCANDOLA S., BOUBEKEUR H., BACH L., MULLER T., STRASSBURG M., RIEDEL S., KRATZERT P., CASPARY D., DEPPE J., WILIER J., SCHULZE J., SCHULZE N., MIKOLAJICK T., KUSTERS K.-H., SHAPPIR A., REDMARD E., BLOOM I., EITAN B., VLSI Techn. Digest Techn. Papers, Kyoto (2005), p. 120.
  • [18] STEIN V., KAMIENSKI E.G., ISLER M., MIKOLAJICK T., LUDWIG C., SCHULZE N., NAGEL N., RIEDEL S., WILLER J., KÜSTERS K.-H., Proc. Non-Volatile Memory Technology Symposium, Dallas, 2005, p. 5.
  • [19] WILLER J., LUDWIG C., DEPPE J., KLEINT C., LAU F., PALM H., EITAN B., BLOOM I., Proc. 19th Nonvolatile Semiconductor Memory Workshop, Monterey, California (2003), p. 42.
  • [20] SUGIZAKI T., KOBAYASHI M., ISHIDAO M., MINAKATA H., YAMAGUCHI M., TAMURA Y., SUGIYAMA Y., NAKANISHI T., TANAKA H., VLSI Techn. Digest Techn. Papers, Kyoto (2003), p. 27.
  • [21] PINNOW C.-U., MIKOLAJICK T., J. Electrochem. Soc., 151 (2004), K1.
  • [22] Materials for Information Technology, E. Zschech, C. Whelan, T. Mikolajick (Eds.), Springer, London, 2005, p. 112.
  • [23] MIKOLAJICK T., DEHM C., HARTNER W., KASKO I., KASTNER M.J., NAGEL N., MOERT M., MAZURE C., Microelectronics Reliability, 41 (2001), 947.
  • [24] LEE S.Y., Extended Abstracts of the International Conference on Solid State Devices and Materials, Kobe, Japan (2005), p. 1026.
  • [25] KOO JU.M., SEO B.-S., KIM S., SHIN S., LEE J.-H., BAIK H., LEE.J.-H., LEE J.H., BAE B.-J., LIM. J.-E., YOO D.-C., PARK S.-O., KIM H.-S., HAN H., BAIK S., CHOI J.-Y., PARK Y.J., PARK Y., IEDM Digest Tech. Papers, IEEE (2005), p. 4.
  • [26] GALAGHER W.J., IEEE VLSI-TSA Int. Symp. VLSI Technology, Kyoto, Japan (2005), p. 72.
  • [27] HOSOMI M., YAMAGISHI H., YAMAMOTO T., BESSHO K., HIGO Y., YAMANE K., YAMADA H., SHOJI M., HACHINO H., FUKUMOTO C., NAGAO H., KANO H., IEDM Digest Techn. Papers, IEEE (2005), p. 459.
  • [28] HUDGENS S., JOHNSON B., MRS Bull. November (2004), p. 829.
  • [29] OH H.-R., IEEE J. Solid State Circuits, 41 (2006), 122.
  • [30] SECZI R., WALTER A., ENGL R., MALTENBERGER A., SCHUMANN J., KUND M., DEHM C., IEDM Digest Techn. Papers IEEE (2003), 10.2.1.
  • [31] YANG Y., Organic Nonvolatile Memories, in [22], p. 197.
  • [32] KRIEGER J.H., SPITZER S.M., Proc. Non-Volatile Memory Technology Symposium, Orlando-Florida (2004), p. 121.
  • [33] LUO Y., COLLIER C.P., JEPPESEN, J.O., NIELSEN K.A., DEIONNO E., HO G., PERKINS J., TSENG H.-R., YAMAMOTO T., FRASER STODDART J., HEATH, J. R., ChemPhysChem, 3 (2002), 519.
  • [34] ROTH K.M., DONTHA N., DABKE R.B., GRYKO D.T., CLAUSEN C., LINDSEY J.S., BOCIAN D.F., KUHR W.G., J. Vac. Sci. Technol., B 18, (2000), 2359.
  • [35] REED M. A., CHEN J., RAWLETT A.M., PRICE D.W., TOUR J.M., Appl. Phys. Lett., 78 (2001), 3735.
  • [36] RUECKES T., KIM K., JOSELEVICH E., TSENG G.Y., CHEUNG C.-L., LIEBER C.M., Science, 289 (2000), 94.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW8-0003-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.