Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 31, No. 1 | 6-13
Tytuł artykułu

Tuning photocurrent response through size control of CdSe quantum dots sensitized solar cells

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The photovoltaic characterization of CdSe quantum dots sensitized solar cells (QDSSCs) by tuning band gap of CdSe quantum dots (QDs) through size control has been investigated. Fluorine doped tin oxide (FTO) substrates were coated with 20 nm in diameter TiO2 nanoparticles (NPs). Pre-synthesized colloidal CdSe quantum dots of different sizes (from 4.0 to 5.4 nm) were deposited on the TiO2-coated substrates using direct adsorption (DA) method. The FTO counter electrodes were coated with platinum, while the electrolyte containing I(-)/I 3 (-) redox species was sandwiched between the two electrodes. The current density-voltage (J-V) characteristic curves of the assembled QDSSCs were measured for different dipping times, and AM 1.5 simulated sunlight. The maximum values of short circuit current density (Jsc) and conversion efficiency (n) are 1.62 mA/cm2 and 0.29 % respectively, corresponding to CdSe QDs of size 4.52 nm (542 nm absorption edge) and of 6 h dipping time. The variation of the CdSe QDs size mainly tunes the alignment of the conduction band minimum of CdSe with respect to that of TiO2 surface. Furthermore, the Jsc increases linearly with increasing intensity of the sun light, which indicates the sensitivity of the assembled cells.
Wydawca

Rocznik
Strony
6-13
Opis fizyczny
Bibliogr. 39 poz., rys., wykr.
Twórcy
autor
autor
autor
  • Department of Physics, Faculty of Science, Taif University, Taif, Saudi Arabia
Bibliografia
  • [1] KAMAT P.V., J. Phys. Chem. C, 112 (2008), 18737.
  • [2] BASKOUTAS S., TERZIS A.F., Mat. Sci. Eng. B, 147 (2008), 280.
  • [3] XIE Y., YOO S. H., CHEN C., CHO S.O., Mat. Sci. Eng. B, 177 (2012), 106.
  • [4] TVRDY K., FRANTSUZOV P.A., KAMAT P.V., PNAS, 108 (2011), 29.
  • [5] IKHMAYIES S.J., AHMAD-BITAR R.N., Sol. Energy Mater. Sol. Cells, 94 (2010), 878.
  • [6] LI Y., PANG A., ZHENG X., WEI M.,Electrochim. Acta, 56 (2011), 4902.
  • [7] KIM J. et al., J. Power Sources, 196 (2011), 10526.
  • [8] SHEN Q., YANAI M., KATAYAMA K., SAWADA T., TOYODA T.,Chem. Phys. Lett., 442 (2007), 89.
  • [9] TUBTIMTAE A., WU K.-L., TUNG H.-Y., LEE M.-W., WANG G.J., Elec. Comm., 12 (2010), 1158.
  • [10] YUM J.-H., CHOI S.-H., KIM S.-S., KIM D.-Y., SUNG Y.-E., J. Korean Phys. Soc., 10 (2007), 257.
  • [11] PERNIK D.R., TVRDY K., RADICH J.G., KAMAT P.V., J. Phys. Chem. C, 115 (2011), 13511.
  • [12] NOZIK A.J.,Chem. Phys. Lett., 457 (2008), 3.
  • [13] GEBRESELASSIE H.M., SHARMA R.B., Int. J. Eng. Sci. and Technology (IJEST), 3 (2011), 2073.
  • [14] GUIJARRO N., LANA-VILLARREAL T., MORA-SERO´ I., BISQUERT J., GO´MEZ R., J. Phys. Chem. C, 113 (2009), 4208.
  • [15] CHEN H., LI W., LIU H., ZHU L., Elec. Comm., 13 (2011), 331.
  • [16] LANDI B.J., CASTRO S.L., RUF H.J., EVANS C.M., BAILEY S.G., RAFFAELLE R.P., Sol. Energy Mater. Sol. Cells, 87 (2005), 733.
  • [17] BADAWI A., AL-HOSINY N., ABDALLAH S., NEGM S., TALAAT H., J. Mat. Sci. Eng. A, 1 (2011), 942.
  • [18] KITADA S., KIKUCHI E., OHNOB A., ARAMAKIB S., MAENOSONO S., Solid State Communications, 149 (2009), 1853.
  • [19] LIU Y., WANG J., Thin Solid Films, 518 (2010), e54.
  • [20] YU P., ZHU K., NORMAN A.G., FERRERE S., FRANK A.J., NOZIK A.J., J. Phys. Chem. B, 110 (2006), 25451.
  • [21] WANG C.-C., CHEN L.-C., WANG T.-C., J. Optoelectronics Advanced Mat., 11 (2009), 834.
  • [22] LIN M.-C., LEE M.-W., Elec. Comm., 13 (2011), 1376.
  • [23] TUBTIMTAE A., LEE M.-W., WANG G.-J., J. Power Sources, 196 (2011), 6603.
  • [24] MADELUNG O., Semiconductors: Data Handbook, Springer-Verlag, Berlin, 2004.
  • [25] JASIENIAK J. et al., Advanced Functional Materials, 17 (2007), 1654.
  • [26] MORA-SERO´. I. et al., Nanotechnology, 19 (2008), 424007.
  • [27] RUHLE S., SHALOM M., ZABAN A., Chem. Phys. Chem., 11 (2010), 2290.
  • [28] SALANT A., SHALOM M., HOD I., FAUST A., ZABAN A., BANIN U., ACS NANO, 4 (2010), 5962.
  • [29] KONGKANAND A., TVRDY K., TAKECHI K., KUNO M., KAMAT P.V., J. Am. Chem. Soc., 130 (2008), 4007.
  • [30] TALAPIN D.V., HAUBOLD S., ROGACH A.L., KORNOWSKI A., HAASE M., WELLER H., J. Phys. Chem. B, 105 (2001), 2260.
  • [31] SYRROKOSTAS G., GIANNOULI M., YIANOULIS P., Renewable Energy, 34 (2009), 1759.
  • [32] THAMBIDURAI M., MURUGAN N., MUTHUKUMARASAMY N., VASANTHA S., BALASUNDARAPRABHU R., AGILAN S.,Chalcogenide Letters, 6 (2009), 171.
  • [33] PRABAKAR K., SEO H., SON M., KIM H., Mater. Chem. Phys., 117 (2009), 26.
  • [34] DAVID I., in: M.L. Trevor (Ed.), Future Energy, Elsevier, Oxford, 2008, p. 225.
  • [35] NANDAKUMAR P., VIJAYAN C., MURTI Y.V.G.S., J. Appl. Phys., 91 (2002), 1509.
  • [36] MALL M., KUMAR P., CHAND S., KUMAR L.,Chem. Phys. Lett., 495 (2010), 236.
  • [37] BLACKBURN J.L., SELMARTEN D.C., ELLINGSON R.J., JONES M., MICIC O., NOZIK A.J., J. Phys. Chem. B, 109 (2005), 2625.
  • [38] KNIPRATH R., RABE J.P., MCLESKEY J.T. JR., WANG D., KIRSTEIN S., Thin Solid Films, 518 (2009), 295.
  • [39] HYUN B.-R. et al., ACS NANO, 2 (2008), 2206.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0027-0042
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.