Czasopismo
2012
|
Vol. 42, nr 3
|
519-532
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Different aberrometry methods exist and the magnitude of measured wavefront aberrations may differ depending on the method used. Even several Shack-Hartmann wavefront sensors may demonstrate clinically significant differences between ocular aberrations measured. In this study, we tested a hypothesis that a possible source of systematic error in Shack-Hartmann aberrometry may be the presence of spherical aberration in the wavefront used for calibrating the Shack-Hartmann wavefront sensor. Six subjects participated in the study. The Shack-Hartmann wavefront sensor was calibrated by using a spherical and an aspheric lens. Statistically significant changes in wavefront aberrations were observed when comparing both references. Clinically significant changes in magnitude of spherical aberration were also observed. We conclude that for precise measurement of aberrations the use of an aspheric lens for wavefront sensor calibration is essential and different sphericity of the wavefront used for calibration purposes may give rise to variability between wavefront data measured by different Shack-Hartmann wavefront sensors.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
519-532
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
autor
autor
autor
- Institute of Solid State Physics, University of Latvia, 8 Kengaraga Street, LV-1063, Riga, Latvia
Bibliografia
- [1] YOON G., JEONG T.M., COX I.G., WILLIAMS D.R., Vision improvement by correcting higher-order aberrations with phase plates in normal eyes, Journal of Refractive Surgery 20, 2004, pp. 523–527.
- [2] MARCOS S., SAWIDES L., GAMBRA E., DORRONSORO C., Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities, Journal of Vision 8(13), 2008, pp. 1–12, (article 1).
- [3] JUNZHONG LIANG, WILLIAMS D.R., MILLER D.T., Supernormal vision and high-resolution retinal imaging through adaptive optics, Journal of Optical Society of America A 14(11), 1997, pp. 2884–2892.
- [4] FERNÁNDEZ J.E., IGLESIAS I., ARTAL P., Closed-loop adaptive optics in the human eye, Optics Letters 26(10), 2001, pp. 746–748.
- [5] SEIFERT L., LIESENER J., TIZIANI H.J., The adaptive Shack–Hartmann sensor, Optics Communications 216(4–6), 2003, pp. 313–319.
- [6] JINGYUN WANG, CANDY T.R., Higher order monochromatic aberrations of the human infant eye, Journal of Vision 5(6), 2005, pp. 543–555, (article 6).
- [7] CHERNYSHOV A., STERR U., RIEHLE F., HELMCKE J., PFUND J., Calibration of a Shack–Hartmann sensor for absolute measurements of wavefronts, Applied Optics 44(30), 2005, pp. 6419–6425.
- [8] ARTZNER G., On the absolute calibration of Shack–Hartmann sensors and UV laboratory wavefront measurements, Pure and Applied Optics 3(2), 1994, pp. 121–132.
- [9] MCALINDEN C., MOORE J.E., The change in internal aberrations following myopic corneal laser refractive surgery, Graefe’s Archive for Clinical and Experimental Ophthalmology 249(5), 2011,pp. 775–781.
- [10] VISSER N., BERENDSCHOT T.T.J.M., VERBAKEL F., TAN A.N., DE BRABANDER J., NUIJTS R.M.M.A., Evaluation of the comparability and repeatability of four wavefront aberrometers, Investigative Ophthalmology and Visual Science 52(3), 2011, pp. 1302–1311.
- [11] XIAOMING Y., XIANG L., LIPING Z., ZHONGPING FANG, Adaptive thresholding and dynamic windowing method for automatic centroid detection of digital Shack–Hartmann wavefront sensor, Applied Optics 48(32), 2009, pp. 6088–6098.
- [12] THIBOS L.N., HONG X., BRADLEY A., APPLEGATE R.A., Accuracy and precision of objective refraction from wavefront aberrations, Journal of Vision 4(4), 2004, pp. 329–351.
- [13] GEUNYOUNG YOON, PANTANELLI S., NAGY L.J., Large-dynamic-range Shack–Hartmann wavefront sensor for highly aberrated eyes, Journal of Biomedical Optics 11(3), 2006, article 030502.
- [14] NAVARRO R., Objective refraction from aberrometry: Theory, Journal of Biomedical Optics 14(2),2009, article 024021.532 V. KARITANS et al.
- [15] MARTINEZ A.A., SANKARIDURG P.R., NADUVILATH T.J., MITCHELL P., Monochromatic aberrations in hyperopic and emmetropic children, Journal of Vision 9(1), 2009, pp. 1–14.
- [16] KARIMIAN F., FEIZI S., DOOZANDE A., Higher-order aberrations in myopic eyes, Journal of Ophthalmic and Vision Research 5(1), 2010, pp. 3–9.
- [17] LUNDSTRÖM L., UNSBO P., Unwrapping Hartmann–Shack images from highly aberrated eyes using an iterative B-spline based extrapolation method, Optometry and Vision Science 81(5), 2004, pp. 383–388.
- [18] PÉREZ G.M., MANZANERA S., ARTAL P., Impact of scattering and spherical aberration in contrast sensitivity, Journal of Vision 9(3), 2009, pp. 1–10.
- [19] MOSHIRFAR M., Spherical aberration of intraocular lenses, Journal of Ophthalmic and Vision Research 5(4), 2010, pp. 215–216.
- [20] KHAN S., ROCHA G., Cataract surgery and optimal spherical aberration: As simple as you think?, Canadian Journal of Ophthalmology 43(6), 2008, pp. 693–701.
- [21] GEUNYOUNG YOON, MACRAE S., WILLIAMS D.R., COX I.G., Causes of spherical aberration induced by laser refractive surgery, Journal of Cataract and Refractive Surgery 31(1), 2005, pp. 127–135.
- [22] MCALINDEN C., MOORE J.E., Higher order aberrations using the NIDEK OPD-Scan and AMO WaveScan, Journal of Refractive Surgery 26(8), 2010, pp. 605–608.
- [23] DOBOS M.J., TWA M.D., BULLIMORE M.A., An evaluation of the Bausch & Lomb Zywave aberrometer, Clinical and Experimental Optometry 92(3), 2009, pp. 238–245.
- [24] CHUNG-LING LIANG, SUH-HANG HANK JUO, CHENG-JONG CHANG, Comparison of higher-order wavefront aberrations with 3 aberrometers, Journal of Cataract and Refractive Surgery 31(11), 2005, pp. 2153–2156.
- [25] PLAINIS S., PALLIKARIS I.G., Ocular monochromatic aberration statistics in a large emmetropic population, Journal of Modern Optics 55(4–5), 2008, pp. 759–772.
- [26] JINHUA BAO, RONGRONG LE, JIANGXIU WU, YEYU SHEN, FAN LU, JI C. HE, Higher-order wavefront aberrations for populations of young emmetropes and myopes, Journal of Optometry 2(1), 2009, pp. 51–58.
- [27] CASTEJÓN-MOCHÓN J.F., LÓPEZ-GIL N., BENITO A., ARTAL P., Ocular wave-front aberration statistics in a normal young population, Vision Research 42(13), 2002, pp. 1611–1617.
- [28] RADHAKRISHNAN H., JINABHAI A., O’DONNELL C., Dynamics of ocular aberrations in keratoconus, Clinical and Experimental Optometry 93(3), 2010, pp. 164–174.
- [29] KOSAKI R., MAEDA N., BESSHO K., HORI Y., NISHIDA K., SUZAKI A., HIROHARA Y., MIHASHI T.,FUJIKADO T., TANO Y., Magnitude and orientation of Zernike terms in patients with keratoconus, Investigative Ophthalmology and Visual Science 48(7), 2007, pp. 3062–3068.
- [30] ROCHA K.M., SORIANO E.S., CHAMON W., CHALITA M.R., NOSÉ W., Spherical aberration and depth of focus in eyes implanted with aspheric and spherical intraocular lenses: A prospective randomized study, Ophthalmolgy 114(11), 2007, pp. 2050–2054.
- [31] MCALINDEN C., MOORE J.E., Comparison of higher order aberrations after LASIK and LASEK for myopia, Journal of Refractive Surgery 26(1), 2010, pp. 45–51.
- [32] PIERS P.A., MANZANERA S., PRIETO P.M., GORCEIX N., ARTAL P., Use of adaptive optics to determine the optimal ocular spherical aberration, Journal of Refractive Surgery 33, 2007, pp. 1721–1726.
- [33] MESTER U., DILLINGER P., ANTERIST N., Impact of a modified optic design on visual function: Clinical comparative study, Journal of Cataract and Refractive Surgery 29(4), 2003, pp. 652–660.
- [34] CHI-XIN DU, YE SHEN, YANG WANG, Comparison of high order aberration after conventional and customized ablation in myopic LASIK in different eyes of the same patient, Journal of Zhejiang University – Science B 8(3), 2007, pp. 177–180.
- [35] URGANCIOGLU B., BILGIHAN K., OZTURK S., Higher-order aberrations and visual acuity after LASEK, International Ophthalmology 28(4), 2008, pp. 269–273.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0027-0008