Warianty tytułu
Języki publikacji
Abstrakty
Focusing properties of Bessel-Gauss beam with radial varying polarization are investigated based on vector diffraction theory in this article. The polarization angle formed by polarization direction and radial coordinate is the function of the radial distance in pupil plane, and one polarization parameter indicates the speed of change of polarization angle. It was found that the intensity distribution in focal region can be altered considerably by the beam parameter and polarization parameter. For a small beam parameter, the focal spot broadens transversely, distorts into ring focus, and then evolves back into focal spot on increasing polarization parameter. When beam parameter gets higher, focal pattern becomes complicated and the focus evolution principle with increasing beam parameter also changes significantly. Some novel focal patterns may appear, including multiple intensity rings, dark hollow focus, cylindrical crust focus.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
481-491
Opis fizyczny
Bibliogr. 27 poz., rys.
Bibliografia
- [1] CHI K.R., Super-resolution microscopy: Breaking the limits, Nature Methods 6(1), 2009, pp. 15–18.
- [2] PATERSON L., MACDONALD M.P., ARLT J., SIBBETT W., BRYANT P.E., DHOLAKIA K., Controlled rotation of optically trapped microscopic particles, Science 292(5518), 2001, pp. 912–914.
- [3] GRIER D.G., A revolution in optical manipulation, Nature 424(6950), 2003, pp. 810–816.
- [4] MACDONALD M.P., SPALDING G.C., DHOLAKIA K., Microfluidic sorting in an optical lattice, Nature 426(6965), 2003, pp. 421–424.
- [5] XIUMIN GAO, FUXI GAN, WENDONG XU, Superresolution by three-zone pure phase plate with 0, π,0 phase variation, Optics and Laser Technology 39(5), 2007, pp. 1074–1080.
- [6] RITTWEGER E., KYU YOUNG HAN, IRVINE S.E., EGGELING C., HELL S.W., STED microscopy reveals crystal colour centres with nanometric resolution, Nature Photonics 3(3), 2009, pp. 144–147.
- [7] VISSCHER K., BRAKENHOFF G.J., Theoretical study of optically induced forces on spherical particles in a single beam trap I: Rayleigh scatterers, Optik 89, 1992, pp. 174–180.
- [8] XIUMIN GAO, ZHOU FEI, WENDONG XU, FUXI GAN, Focus splitting induced by a pure phase-shifting apodizer, Optics Communications 239(1–3), 2004, pp. 55–59.
- [9] ARLT J., PADGETT M.J., Generation of a beam with a dark focus surrounded by regions of higher intensity: The optical bottle beam, Optics Letters 25(4), 2000, pp. 191–193
- [10] GBUR G., VISSER T.D., Can spatial coherence effects produce a local minimum of intensity at focus?,Optics Letters 28(18), 2003, pp. 1627–1629.
- [11] GANIC D., XIAOSONG GAN, MIN GU, HAIN M., SOMALINGAM S., STANKOVIC S., TSCHUDI T., Generation of doughnut laser beams by use of a liquid-crystal cell with a conversion efficiency near 100%, Optics Letters 27(15), 2002, pp. 1351–1353.
- [12] QIWEN ZHAN, Cylindrical vector beams: from mathematical concepts to applications, Advances in Optics and Photonics 1(1), 2009, pp. 1–57.
- [13] QIWEN ZHAN, LEGER J.R., Focus shaping using cylindrical vector beams, Optics Express 10(7), 2002, pp. 324–330.
- [14] YOUNGWORTH K.S., BROWN T.G., Focusing of high numerical aperture cylindrical-vector beams, Optics Express 7(2), 2000, pp. 77–87.
- [15] XIUMIN GAO, MINGYU GAO, SONG HU, HANMING GUO, JIAN WANG, SONGLIN ZHUANG, High focusing of radially polarized Bessel-modulated Gaussian beam, Optica Applicata 40(4), 2010, pp. 965–974.
- [16] XIUMIN GAO, QIUFANG ZHAN, JINSONG LI, SONG HU, JIAN WANG, SONGLIN ZHUANG, Cylindrical vector axisymmetric Bessel-modulated Gaussian beam, Optical and Quantum Electronics 41(5), 2009, pp. 385–396.
- [17] ORON R., BLIT S., DAVIDSON N., FRIESEM A.A., BOMZON Z., HASMAN E., The formation of laser beams with pure azimuthal or radial polarization, Applied Physics Letters 77(21), 2000, pp. 3322–3324.
- [18] HAIFENG WANG, LUPING SHI, LUKYANCHUK B., SHEPPARD C., CHONG TOW CHONG, Creation of a needle of longitudinally polarized light in vacuum using binary optics, Nature Photonics 2(8), 2008, pp. 501–505.
- [19] YAJUN LI, GUREVICH V., KIRCHEVER M., KATZ J., MAROM E., Propagation of anistropic Bessel––Gaussian beams: Sidelobe control, mode selection, and field depth, Applied Optics 40(16), 2001, pp. 2709–2721.
- [20] YUANJIE YANG, YUDE LI, Spectral shifts and spectral switches of a pulsed Bessel–Gauss beam from a circular aperture in the far field, Optics and Laser Technology 39(8), 2007, pp. 1478–1484.
- [21] EYYUBOGLU H.T., HARDALAC F., Propagation of modified Bessel–Gaussian beams in turbulence, Optics and Laser Technology 40(2), 2008, pp. 343–351.
- [22] ORLOV S., STABINIS A., Free-space propagation of light field created by Bessel–Gauss and Laguerre–Gauss singular beams, Optics Communications 226(1–6), 2003, pp. 97–105.
- [23] XIAOLING JI, BAIDA LÜ, Focal shift and focal switch of Bessel–Gaussian beams passing through a lens system with or without aperture, Optics and Laser Technology 39(3), 2007, pp. 562–568.
- [24] YUAN G.H., WEI S.B., YUAN X.-C., Nondiffracting transversally polarized beam, Optics Letters 36(17), 2011, pp. 3479–3481.
- [25] LITVIN I.A., FORBES A., Bessel–Gauss resonator with internal amplitude filter, Optics Communications 281(9), 2008, pp. 2385–2392.
- [26] XIU-MIN GAO, SONG HU, JIN-SONG LI, ZUO-HONG DING, HAN-MING GUO, SONG-LIN ZHUANG, Tunable optical gradient trap by radial varying polarization Bessel–Gauss beam, Journal of Biomedical Science and Engineering 3(3), 2010, pp. 304–307.
- [27] YEW E.Y.S., SHEPPARD C.J.R., Tight focusing of radially polarized Gaussian and Bessel–Gauss beams, Optics Letters 32(23), 2007, pp. 3417–3419.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0027-0005