Czasopismo
2012
|
Vol. 42, nr 2
|
323-336
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In our investigation, V/Ag doped TiO2 thin films were prepared on glass substrates. A thin film of SiO2 was prepared as a blocking layer by the dip coating sol-gel technique. A catalytic effect was investigated for obtained samples using Rhodamine B as a probe. Transmittances of the samples were characterized using a UV-VIS spectrophotometer. Subsequently band-gap energy (Eg) was estimated for these films. Chemical composition of the samples was studied by photoelectron spectroscopy (XPS). Powders obtained from sols were characterized by FTIR spectroscopy and X-ray diffraction (XRD).
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
323-336
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
autor
autor
- AGH - University of Science and Technology, Department of Material Science and Ceramic, al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
- [1] PRAIRIE M.R., EVANS L.R., STANGE B.M., MARLINEZ S.L., An investigation of titanium dioxide photocatalysis for the treatment of water contaminated with metals and organic chemicals, Environmental Science and Technology 27(9), 1993, pp. 1776–1782.
- [2] PATSOURA A., KONDARIDES D.I., VERYKIOS X.E., Photocatalytic degradation of organic pollutants with simultaneous production of hydrogen, Catalysis Today 124(3–4), 2007, pp. 94–102.
- [3] ZOU L., LUO Y., HOOPER M., HU E., Removal of VOCs by photocatalysis process using adsorption enhanced TiO2–SiO2 catalyst, Chemical Engineering and Processing: Process Intensification 45(11), 2006, pp. 959–964.
- [4] DOUSHITA K., KAWAHARA T., Evaluation of photocatalytic activity by dye decomposition, Journal of Sol-Gel Science and Technology 22(1–2), 2001, pp. 91–98.
- [5] SHOURONG ZHENG, JIANZHONG ZHENG, ZHIGANG ZOU, Photo-catalytic properties of TiO2 supported layered compounds for dye removal, Research on Chemical Intermediates 31(4–6), 2005,pp. 493–498.
- [6] FENG CHEN, JINCAI ZHAO, HISAO HIDAKA, Highly selective deethylation of rhodamine B: Adsorption and photooxidation pathways of the dye on the TiO2/SiO2 composite photocatalyst, International Journal of Photoenergy 5(4), 2003, pp. 209–217.
- [7] SUNADA K., WATANABE T., HASHIMOTO K., Studies on photokilling of bacteria on TiO2 thin film, Journal of Photochemistry and Photobiology A: Chemistry 156(1–3), 2003, pp. 227–233.
- [8] AEGERTER M.A., ALMEIDA R., SOUTAR A., TADANAGA K., YANG H., WATANABE T., Coatings made by sol–gel and chemical nanotechnology, Journal of Sol-Gel Science and Technology 47(2), 2008, pp. 203–236.
- [9] KOMINAMI H., TAKADA Y., YAMAGIWA H., KERA Y., INOUE M., INUI T., Synthesis of thermally stable nanocrystalline anatase by high-temperature hydrolysis of titanium alkoxide with water dissolved in organic solvent from gas phase, Journal of Materials Science Letters 15(3), 1996, pp. 197–200.
- [10] SOPYAN I., WATANABE M., MURASAWA S., HASHIMOTO K., FUJISHIMA A., An efficient TiO2 thin-film photocatalyst: photocatalytic properties in gas-phase acetaldehyde degradation, Journal of Photochemistry and Photobiology A: Chemistry 98(1–2), 1996, pp. 79–86.
- [11] DONG HYUN KIM, ANDERSON M.A., Solution factors affecting the photocatalytic and photoelectrocatalytic degradation of formic acid using supported TiO2 thin films, Journal of Photochemistry and Photobiology A: Chemistry 94(2–3), 1996, pp. 221–229.
- [12] PERAL J., OLLIS D.F., Heterogeneous photocatalytic oxidation of gas-phase organics for air purification: Acetone, 1-butanol, butyraldehyde, formaldehyde, and m-xylene oxidation, Journal of Catalysis 136(2), 1992, pp. 554–565.
- [13] LINSEBIGLER A.L., GUANGQUAN LU, YATES J.T., Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results, Chemical Reviews 95(3), 1995, pp. 735–758.
- [14] XIAOBO CHEN, MAO S.S., Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications, Chemical Reviews 107(7), 2007, pp. 2891–2959.
- [15] RAMPAUL A., PARKIN I.P., O’NEILL S.A., DESOUZA J., MILLS A., ELLIOTT N., Titania and tungsten doped titania thin films on glass; active photocatalysts, Polyhedron 22(1), 2003, pp. 35–44.
- [16] KEMP T.J., MCINTYRE R.A., Transition metal-doped titanium(IV) dioxide: Characterisation and influence on photodegradation of poly(vinyl chloride), Polymer Degradation and Stability 91(1), 2006, pp. 165–194.
- [17] YANFANG SHEN, TIANYING XIONG, HAO DU, HUAZI JIN, JIANKU SHANG, KE YANG, Phosphorous, nitrogen, and molybdenum ternary co-doped TiO2: preparation and photocatalytic activities under visible light, Journal of Sol-Gel Science and Technology 50(1), 2009, pp. 98–102.
- [18] SONG LIU, TIANHUA XIE, ZHI CHEN, JIANTAO WU, Highly active V–TiO2 for photocatalytic degradation of methyl orange, Applied Surface Science 255(20), 2009, pp. 8587–8592.
- [19] WU J. C.-S., CHEN CH.-H., A visible-light response vanadium-doped titania nanocatalyst by sol–gel method, Journal of Photochemistry and Photobiology A: Chemistry 163(3), 2004, pp. 509–515.
- [20] HAO GE, GUANGWEN CHEN, QUAN YUAN, HENGQIANG LI, Gas phase partial oxidation of toluene over modified V2O5/TiO2 catalysts in a microreactor, Chemical Engineering Journal 127(1–3), 2007, pp. 39–46.
- [21] JIAGUO YU, YU J.C., XIUJIAN ZHAO, The effect of SiO2 addition on the grain size and photocatalytic activity of TiO2 thin films, Journal of Sol-Gel Science and Technology 24(2), 2002, pp. 95–103.
- [22] GUNZLER H., GREMLICH H.U., [Eds.], IR Spectroscopy. An Introduction, Wiley-VCH, 2002, p. 208.
- [23] CRISAN M., ZAHARESCU M., CRISAN D., ION R., MANOLACHE M., Vanadium doped sol–gel TiO2 coatings, Journal of Sol-Gel Science and Technology 13(1–3), 1998, pp. 775–778.
- [24] NARAYANA K.V., VENUGOPAL A., RAMA RAO K.S., KHAJA MASTHAN S., VENKAT RAO V., KANTA RAO P., Ammoxidation of 3-picoline over V2O5/TiO2 (anatase) system. II. Characterisation of the catalysts by DTA, SEM, FTIR, ESR and oxygen and ammonia chemisorption, Applied Catalysis A: General 167(1), 1998, pp. 11–22.
- [25] REDDY B.M., GANESH I., KHAN A., Preparation and characterization of In2O3–TiO2 and V2O5 /In2O3–TiO2 composite oxides for catalytic applications, Applied Catalysis A: General 248(1–2), 2003, pp. 169–180.
- [26] KWON S.H., SEO K.C., PAE Y.I., SOHN J.R., Spectroscopic study of V2O5 supported on ZrO2 and modified with MoO3, Theories and Applications of Chemical Engineering 8(2), 2002, pp. 2633–2636.
- [27] JONG RACK SOHN, MAN HO LEE, IM JA DOH, YOUNG IL PAE, Solid-state 51V NMR and infrared spectroscopic study of vanadium oxide supported on ZrO2–WO3, Bulletin of the Korean Chemical Society 19(8), 1998, pp. 856–862.
- [28] JONG RACK SOHN, CHEUL KYU LEE, Effect of V2O5 modification in V2O5/TiO2–ZrO2 catalysts on their surface properties and catalytic activities for acid catalysis, Bulletin of the Korean Chemical Society 28(12), 2007, pp. 2459–2465.
- [29] NEFEDOV V.I., GATI D., DZHURINSKII B.F., SERGUSHIN N.P., SALYN YA.V., Simple and coordination compounds, Russian Journal of Inorganic Chemistry 20, 1975, pp. 2307–2314.
- [30] WENFANG ZHOU, QINGJU LIU, ZHONGQI ZHU, JI ZHANG, Preparation and properties of vanadium- -doped TiO2 photocatalysts, Journal of Physics D: Applied Physics 43(3), 2010, article 035301.
- [31] HYUNG-JOO CHOI, JUN-SIK KIM, MISOOK KANG, Photodecomposition of concentrated ammonia over nanometer-sized TiO2, V–TiO2, and Pt/V–TiO2 photocatalysts, Bulletin of the Korean Chemical Society 28(4), 2007, pp. 581–588.
- [32] WAGNER C.D., MOULDER J.F., DAVIS L.E., RIGGS W.M., Handbook of X-Ray Photoelectron Spectroscopy, Perking-Elmer Corporation, Physical Electronics Division, 1978.
- [33] BRACONNIER B., PÁEZ C.A., LAMBERT S., ALIÉ CH., HENRIST C., POELMAN D., PIRARD J.P., CLOOTS R.,HEINRICHS B., Ag- and SiO2-doped porous TiO2 with enhanced thermal stability, Microporous and Mesoporous Materials 122(1–3), 2009, pp. 247–254.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0023-0018