Warianty tytułu
Nanotechnologia. Metody wytwarzania nanowłókien celulozowych
Języki publikacji
Abstrakty
Nanotechnologia należy ciągle do nowych, chociaż już w pełni ukształtowanych i coraz bardziej wykorzystywanych w życiu codziennym dziedzin nauki. Celuloza jest polimerem tanim, hydrofilowym, chiralnym i łatwym do modyfikacji chemicznych. Jest materiałem biodegradowalnym i społecznie akceptowalnym. Wszystkie te cechy sprawiają, że celuloza staje się atrakcyjnym zamiennikiem sztucznych tworzyw stosowanych jako wypełniacze czy wzmacniacze kompozytów. Polimer złożony z nanowłókien celulozowych, którego właściwości funkcjonalne determinowane są przez strukturę nanofibryli, nazywany jest nanocelulozą. W artykule omówiono metody wytwarzania nanoproduktów oraz zaprezentowano różne koncepcje wytwarzania nanowłókien z biomasy roślinnej.
Nanotechnology is still a new science, but already fully developed and increasingly used in everyday life. Cellulose is a polymer of low cost and is also hydrophilic, chiral and can be easily subject to chemical modifications. Moreover, cellulosic material is biodegradable and socially acceptable. All these features make cellulose an attractive replacement for plastics used as composite fillers or reinforcement. A polymer composed of cellulose nanofibres, whose functional properties are determined by the fibril structure, is called nanocellulose. The article discusses the methods of producing nanomaterials and presents different concepts of cellulose nanofibre production of plant biomass.
Czasopismo
Rocznik
Strony
8-12
Opis fizyczny
Bibliogr. 69 poz.
Twórcy
autor
autor
autor
- Poland, Łódź, Technical University of Łódź, Institut of Technical Biochemistry
Bibliografia
- 1. Poole CP jr, Owens FJ. Introduction to nanotechnology, John Wiley & Sons, 2003.
- 2. Edwards SA. The Nanotech Pioneers, WILEY-VCH, 2006, pp. 15-17.
- 3. Taniguchi N.: On the Basic Concept of ‘Nano-Technology, Proc. Intl. Conf. Prod. Eng. Tokyo, 1974, Part II, Japan Society of Precision Engineering.
- 4. Hatzor-de Picciotto A, Wissner-Gross AD, Lavallee G, Weiss PS. Experimental Nanoscience 2007; 2: 3-11.
- 5. Balzani V. Nanoscience and nanotechnology, Pure Appl. Chem. 2008; 80, 8: 1631-1650.
- 6. Serkov AT, Radishevskii MB. Fibre Chemistry 2008; 40: 32-36.
- 7. Kelsall RW, Hamley IW, Geoghegan M. (ed.) Nanoscale Science and Technology. 2005, John Wiley & Sons, Ltd.
- 8. Lee J, Mahendra S, Alvarez P J.J. Nanomaterials in the Construction Industry: A Review of Their Applications and Environmental Health and Safety Considerations, ACS Nano 2010; 4 (7): 3580-3590.
- 9. Gianella A, Jarzyna PA, Mani V, Ramachandran S, Calcagno C, Tang J, Kann B, Dijk WJR, Thijssen VL, Griffoen AW, Storm G, Fayad ZA, Mulder WJM. Multifunctional Nanoemulsion Platform for Imaging Guided Therapy Evaluated in Experimental Cancer, ACS Nano 2011; 5 (6): 4422–4433.
- 10. Nano acceleration network, http://nanotechnology.e-spaces.com/nano_products.html
- 11. Real World Applications of Nanotechnology http://www.nnin.org/nnin_nanoproducts.html
- 12. Mikołajczyk T, Boguń M, Kurzak A, Wójcik M, Nowicka K. Infuence of Forming Conditions on the Tensile Strength Properties of PAN Fibres Containing a Ferromagnetic Nanoaddition, Fibres & Textiles in Eastern Europe 2007; 15, 3 (62): 19-24.
- 13. Mikołajczyk T, Boguń M, Szparaga G. Infuence of the Type of Montmorillonite and the Conditions of Fibre Formation from a Polyacrylonitrile Nanocomposite on the Fibre Properties, Fibres & Textiles in Eastern Europe 2007; 15: 3(62): 25-31.
- 14. Ujhelyiová A, Strecká Z, Bolhová E, Dulíková M, Bugaj P. Polypropylene Fibres Modifed by Polyvinyl Alcohol and Nanoadditive. Structure and Properties, Fibres & Textiles in Eastern Europe 2007; 15, 5-6 (64 - 65), 37-40.
- 15. Global Nanomaterials Opportunity and Emerging Trends, Lucintel Brief, Published: March 2011, www.lucintel.com/LucintelBrief/GlobalNanomaterialsopportunity-Final.pdf.
- 16. Research and Markets: Nanomaterials Production 2002-2016: Production Volumes, Revenues and End User Market Demand, http://www.researchandmarkets.com/research/5b0347/nanomaterials_pro.
- 17. European Commission, Nanotechnology Research needs on nanoparticles. Proceedings of the workshop held in Brussels, 25-26.01.2005.
- 18. Schaefer K, Thomas H, Dalton P, Moeller M. Nano-fbres for flter materials. http://www.scribd.com/doc/30357529/Nano-Fibres-for-Filter-Materials.
- 19. Yamashita Y., Ko F., Miyake H., Higashiyama A.: Establishment of nano fber preparation technique for nanocomposite. 16th International Conference on Composite Materials, 2007.
- 20. Fan Y, Fukuzumi H, Saito T, Isogai A. Comparative characterization of aqueous dispersions and cast flms of different chitin nanowhiskers/nanofbers, 2011, International Journal of Biological Macromolecules In Press, Corrected Proof.
- 21. Watthanaphanit A, Supaphol P, Tamura H, Tokura S, Rujiravanit R. Fabrication, Structure, and Properties of Chitin Whisker-Reinforced Alginate Nanocomposite Fibers, Journal of Applied Polymer Science 2008; 110: 890-899.
- 22. Fan Y, Saito T, Isogai A. TEMPO-mediated oxidation of β-chitin to prepare individual nanofbrils, Carbohydrate Polymers 2009; 77: 832-838.
- 23. Fan Y, Saito T, Isogai A, Individual chitin nano-whiskers prepared from partially deacetylated α-chitin by fbril surface cationization, Carbohydrate Polymers 2010; 79: 1046-1051.
- 24. Cardamone JM, Martin JJ, Keratin Coatings for Wool: Shrinkproofng and Nanoparticle Delivery, Macromol. Symp. 2008; 272: 161-166.
- 25. Martin JJ, Cardamone JM, Irwin PL, Brown EM. Keratin capped silver nanoparticles-synthesis and characterization of a nanomaterial with desirable handling properties, Colloids Surf B Biointerfaces 2011 Nov 1; 88(1): 354-61.
- 26. Xing Z-C, Yuan J, Chae W-P, Kang I-K, Kim S-Y. Keratin Nanofbers as a Biomaterial, 2010 International Conference on Nanotechnology and Biosensors IPCBEE vol. 2 (2011) IACSIT Press, Singapore, pp. 120-124.
- 27. Tonin C, Aluigi A, Varesano A, Vineis C. Keratin-based Nanofbres, in: Nanofbers, edited by: Ashok Kumar, InTech, 2010, pp. 139-158.
- 28. Adomavičiūtė E, Milašius R, Žemaitaitis A, Bendoraitienė J, Leskovšek M, Demšar A. Methods of Forming Nanofbres from Bicomponent PVA/Cationic Starch Solution. Fibres & Textiles in Eastern Europe 2009; 17, 3(74): 29-33.
- 29. Ayse Alemdar, Mohini Sain, Biocomposites from wheat straw nanofbers: Morphology, thermal and mechanical properties, Composites Science and Technology 2008; 68: 2: 557-565.
- 30. Šukytė J, Adomavičiūtė E, Milašius R. Investigation of the Possibility of Forming Nanofbres with Potato Starch. Fibres & Textiles in Eastern Europe 2010; 18, 5(82): 24-27.
- 31. Fujisawa F, Okita Y, Fukuzumi H, Saito T, Isogai A. Preparation and characterization of TEMPO-oxidized cellulose nanofbril flms with free carboxyl groups. Carbohyd. Polym. 2011; 84: 579-583.
- 32. Isogai A, Saito T, Fukuzumi H. TEMPOoxidized cellulose nanofbers, Nanoscale, 2011; 3: 71-85.
- 33. Iwamoto S, Kai W, Isogai T, Saito T, Isogai A, Iwata T. Comparison study of TEMPO-analogous compounds on oxidation effciency of wood cellulose for preparation of cellulose nanofbrils, Polym. Degrad. Stabil. 2010; 95: 1394-1398.
- 34. Hayashi N, Kondo T, Ishihara M. Enzymatically produced nano-ordered short elements containing cellulose Ib crystalline domains. Carbohyd. Polym. 2005; 61: 191-197.
- 35. Abdul Khalil HPS, Bhat AH, Ireana Yusra AF. Green composites from sustainable cellulose nanofbrils: A review. Carbohydrate Polymers 2012; 87: 963-979.
- 36. Eichhorn SJ, Dufresne A., et al. Review: current international research into cellulose nanofbres and nanocomposites. J. Mater. Sci. 2010; 45: 1-33.
- 37. Siró I, Plackett D, Microfbrillated cellulose and new nanocomposite materials: a review. Cellulose 2010; 17: 459-494.
- 38. Chen W, Yu H, Liu Y, Chen P, Zhang M,Hai Y. Individualization of cellulose nanofbers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohyd. Polym. 2011; 83: 1804-1811.
- 39. Hubbe MA, Rojas OJ, Lucia LA, Sain M. Cellulosic nanocomposites: a review. BioResources 2008; 3: 929-980.
- 40. Nukavarapu S, James R, Hogan M, Laurencin C. Recent patents on electrospun biomedical nanostructures: an overview. Rec. Patents on Biomed. Eng. 2008; 1: 68-78.
- 41. Cengiz F, Krucińska I, Gliścińska E, Chrzanowski M, Göktepe F. Comparative Analysis of Various Electrospinning Methods of Nanofbre Formation. Fibres & Textiles in Eastern Europe 2009; 17, 1(72): 13-19.
- 42. Huang Chao Chiung, Lin CK, Lu CT, Lou Ching Wen, Chao CY. Evaluation of the Electrospinning Manufacturing Process based on the Preparation of PVA Composite Fibres. Fibres & Textiles in Eastern Europe 2009; 17, 3(74): 34-37.
- 43. Dabirian F, Hosseini SA. Novel Method for Nanofbre Yarn Production Using Two Differently Charged Nozzles. Fibres & Textiles in Eastern Europe 2009; 17, 3(74): 45-47.
- 44. Sójka-Ledakowicz J, Lewartowska J, Kudzin M, Jesionowski T, Siwińska-Stefańska K, Krysztafkiewicz A. Fibres & Textiles in Eastern Europe 2008; 16, 5(70): 112-116.
- 45. Syverud K, Chinga-Carrasco G, Toledo J, Toledo P. A comparative study of eucalyptus and pinus radiata pulp fbres as raw materials for production of cellulose nanofbrils. Carbohyd. Polym. 2011; 84: 1033-1038.
- 46. Seydibeyoglu Ö, Oksman K. Novel nanocomposites based on polyurethane and micro fbrillated cellulose. Comp. Scien. and Techn. 2008; 68: 908-914.
- 47. Lee S-Y, Chun S-J, Kang I-A, Park J-Y. Preparation of cellulose nanofbrils by high-pressure homogenizer and cellulose-based composite flms, J. Ind. Eng. Chem. 2009; 15: 50-55.
- 48. Siró I, Plackett D, Hedenqvist M, Ankerfors M, Lindström T. Highly transparent flms from carboxymethylated microfbrillated cellulose: the effect of multiple homogenization steps on key properties. J. Appl. Polym. Sci. 2011; 119: 2652-2660.
- 49. Yu Cao, Huimin Tan. Effects of cellulase on the modifcation of cellulose. Carbohydrate Research 2002; 337: 1291-1296.
- 50. Zhoujian Hu, Marcus Foston, Arthur J. Ragauskas. Comparative studies on hydrothermal pretreatment and enzymatic saccharifcation of leaves and internodes of alamo switchgrass. Bioresource Technology 2011; 102: 7224-7228.
- 51. Zuluaga R, Putaux J, Cruz J, Vélez J, Mondragon I, Gañán P. Cellulose microfbrils from banana rachis: Effect of alkaline treatments on structural and morphological features. Carbohyd. Polym. 2009; 76: 51-59.
- 52. Bhattacharya D, Germinario L, Winter W. Isolation, preparation and characterization of cellulose microfbers obtained from bagasse. Carbohyd. Polym. 2008; 73: 371-377.
- 53. Sehaqui H, Allais M, Zhou Q, Berglund L. Wood cellulose biocomposites with fbrous structures at micro- and nanoscale. Comp. Scien and Techn 2011; 71: 382-387.
- 54. George J, Ramana KV., et al. Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites. International Journal of Biological Macromolecules 2011; 48: 50-57.
- 55. Favier V, Chanzy H, Cavaille JY. Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 1995; 28: 6365-6367.
- 56. Yang Li, Arthur J. Ragauskas Cellulose Nano Whiskers as a Reinforcing Filler in Polyurethanes, Advances in Diverse Industrial Applications of Nanocomposites, Boreddy Reddy (Ed.), 2011. ISBN:978-953-307-202-9, InTech, Available from: http://www.intechopen.com/articles/show/title/cellulose-nano-whiskers-asa-reinforcing-fller-in-polyurethanes.
- 57. Martínez-Sanz M, Lopez-Rubio A, Lagaron JM. Optimization of the nanofabrication by acid hydrolysis of bacterial cellulose nanowhiskers. Carbohydrate Polymers 2011; 85: 228-236.
- 58. Turbak AF, Snyder FW, Sandberg KR. J. Appl. Polym. Sci. Appl. Polym. Symp. 1983; 37: 815.
- 59. Kamm B, Kamm M, Gruber P. Biorefnery Systems –an Overview. In: Biorefneries – Industrial Processes and Products. Status Quo and Future Directions. (Eds: B. Kamm, M. Kamm, P. Gruber), WILEY-VCH, Weinheim 2006; 1: pp. 3-40.
- 60. Kamm B, Gruber P, Kamm M. Biorefneries- Industrial Processes and Products, Ullmann’s Encyclopedia of Industrial Chemistry. 7th ed. WILEY-VCH 2007.
- 61. Ahola S, Turon X, Osterberg M, Laine J, Rojas OJ. Langmuir 2008; 24: 11592-11599.
- 62. Janardhnan S, Sain MM. Isolation of cellulose microfbrils – an enzymatic approach. BioResources 2006; 2: 176-188.
- 63. Satyamurthy P, Jain P, Balasubramanya RH, Vigneshwaran N. Preparation and characterization of cellulose nanowhiskers from cotton fbres by controlled microbial hydrolysis. Carbohydr. Polym. 2011; 83: 122-129.
- 64. Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, kkala O, Lindström T. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fbrils and strong gels. Biomacromolecules 2007; 8: 1934-1941.
- 65. Gibson PW, Lee C, Ko F, Reneker D. Application of Nanofber Technology to Nonwoven Thermal Insulation. Journal of Engineered Fibers and Fabrics 2007; 2, 2: 32-40.
- 66. Vasita R, Katti DS. Nanofbers and their applications in tissue engineering. Int J Nanomedicine 2006; 1(1): 15-30.
- 67. Huang J. Syntheses and applications of conducting polymer polyaniline nanofbres. Pure Appl. Chem. 2006;78, 1: 15–27.
- 68. Huang ZM, Zhang Y-Z, Kotaki M, Ramakrishna S. A review on polymer nanofbers by electrospinning and their applications in nanocomposites. Composites Science and Technology 2003; 63: 2223-2253.
- 69. Mazalevska O, Struszczyk MH, Chrzanowski M, Krucińska I. Application of Electrospinning for Vascular Graft Performance – Preliminary Results. Fibres & Textiles in Eastern Europe 2011; 19, 4(87): 46-52.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0021-0068