Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | Vol. 29, No. 3 | 233--240
Tytuł artykułu

Mechanisms of carriers transport in Ni/n-SiC, Ti/n-SiC ohmic contacts

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A mechanism of carriers transport through metal-semiconductor interface created by nickel or titanium-based ohmic contacts on Si-face n-type 4H-SiC is presented herein. The mechanism was observed within the temperature range of 20 °C - 300 °C which are typical for devices operating at high current density and at poor cooling conditions. It was found that carriers transport depends strongly on concentration of dopants in the epitaxial layer. The carriers transport has thermionic emission nature for low dopant concentration of 51016 cm-3. The thermionic emission was identified for moderate dopant concentration of 5-1017 cm-3 at temperatures higher than 200 °C. Below 200 °C, the field emission dominates (for the same doping level of 5-1017 cm-3). High dopant concentration of 5-1018 cm-3 leads to almost pure field emission transport within the whole investigated temperature range.
Słowa kluczowe
Wydawca

Rocznik
Strony
233--240
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
autor
  • Warsaw University of Technology, Institute of Microelectronics and Optoelectronics, ul. Koszykowa 75, 00-662 Warszawa, Poland
Bibliografia
  • [1] PORTER L.M., DAVIS R.F., Mater. Sci. Eng., B34 (1995), 83.
  • [2] CHANG S-C., WANG S-J., UANG K-M., LIOU B-W., Solid State Electronics, 49 (2005), 1937.
  • [3] BLANK T.V, GOLDBERD YU.A., Semiconductors, 41 (2007), 1263.
  • [4] PADOVANI F.A., STRATTON R., Solid State Electron., 9 (1966), 695.
  • [5] RHODERICK E. H., Metal-Semiconductor Contacts, Clarendon, Oxford, 1978.
  • [6] PECZ B., TOTH L., DI FORTE-POISSON M., VACAS J., Appl. Surf. Sci, 206 (2003), 8.
  • [7] WANG Z., TSUKIMOTO S., MITSUHIRO S., KAZUHIRO I., MURAKAMI M., IKUHARA Y., Phys. Rev., B 80 (2009), 245303.
  • [8] NIKITINA I.P., VASSILEVSKI K.V., WRIGHT N.G., HORSFALL A.B., ONEILL A.G., JOHNSON C.M., J. Appl. Phys, 97 (2005), 083709.
  • [9] YURYEVA E.I., IVANOVSKII A.L., Russ. J. Coord. Chem., 28 (2002), 881.
  • [10] KURIMOTO E., HARIMA H., TODA T., SAWADA M., IWAMI M., NAKASHIMA S., J. Appl. Phys., 91 (2002), 10215.
  • [11] LA VIA F., ROCCAFORTE F., MAKHTARI A., RAINERI V., MUSUMECI P., CALCAGNO L., Microelectronic Eng., 60 (2002), 269.
  • [12] LEVIT M., GRIMBERG I., WEISS B.-Z., J. Appl. Phys., 80 (1996), 167.
  • [13] WEIJIE L., MITCHEL W.C., LANDIS G.R., CRENSHAW T.R., COLLINS W.E., J. Appl. Phys., 93 (2003), 5397.
  • [14] SEYLLER TH., EMTSEV K.V., SPECK F., GAO K.-Y., LEY L., Appl. Phys. Lett., 88 (2006), 242103.
  • [15] HAN S.Y., KIM K.H., KIM J.K., JANG H.W., LEE K.H., KIM N.-K. KIM E.-D., LEE J.-L., Appl. Phys. Lett., 79 (2001), 1816.
  • [16] WEIJIE L., MITCHEL W.C., THORNTON C.A., LANDIS G.R., COLLINS W.E., J. Electronic Mat., 32 (2003), 426.
  • [17] TUNG R.T., Mat. Sci. Eng., R35 (2001), 1.
  • [18] WITTMER M., TING C.-Y., OHDOMARI I., TU K.N., J. Appl. Phys., 53 (1982), 6781.
  • [19] BINDELL J.B., MOLLER W.M., LABUDA E.F., IEEE Trans. Electron Devices, ED-27 (1980), 420.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0019-0080
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.