Warianty tytułu
Języki publikacji
Abstrakty
Silver nanowire filled photonic crystal fibers are proposed in this paper to achieve surface plasmon resonance sensors and overcome the complicacy and difficulty of coating the holes in the photonic crystal fiber. Optical field distributions of these fibers at different wavelengths are calculated and simulated using the finite element method (FEM), and the sensing properties are discussed in both areas of resonant wavelength and intensity detection. Numerical simulation results show that carefully designed structure of the sensor brings about an excellent effect, with both spectral and intensity sensitivity in the range of 4×10-5-5×10-5 RIU, better than in the case of similar structures coated with metal film, and the fabrication is expected to be simplified.
Czasopismo
Rocznik
Tom
Strony
941--951
Opis fizyczny
Bibliogr. 26 poz.
Bibliografia
- [1] BYOUNGHO LEE, SOOKYOUNG ROH, JUNGHYUN PARK, Current status of micro- and nano-structured optical fiber sensors, Optical Fiber Technology 15(3), 2009, pp. 209–221.
- [2] SHARMA A.K., JHA R., GUPTA B.D., Fiber-optic sensors based on surface plasmon resonance:A comprehensive review, IEEE Sensors Journal 7(8), 2007, pp. 1118–1129.
- [3] OTTO A., Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection, Zeitschrift für Physik A 216(4), 1968, pp. 398–410.
- [4] KRETSCHMANN E., REATHER H., Radiative decay of non-radiative surface plasmons excited by light,Zeitschrift für Naturforschung 23,1968, pp. 2135–2136.
- [5] KRETSCHMANN E., Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingungen, Zeitschrift für Physik A 241(4), 1971, pp. 313–324.
- [6] LIEDBERG B., NYLANDER C., LUNDSTRÖM I., Surface plasmon resonance for gas detection and biosensing, Sensors and Actuators 4, 1983, pp. 299–304.
- [7] MELENDEZA J., CARRA R., BARTHOLOMEWA D.U., KUKANSKIS K., ELKIND J., YEE S., FURLONG C., WOODBURY R., A commercial solution for surface plasmon sensing, Sensors and Actuators B 35(1–3), 1996, pp. 212–216.
- [8] ZHANG L.M., UTTAMCHANDANI D., Optical chemical sensing employing surface plasmon resonance,Electronics Letters 24(23), 1988, pp. 1469–1470.
- [9] KABASHIN A.V., NIKITIN P.I., Surface plasmon resonance interferometer for bio- and chemical-sensors, Optics Communications 150(1–6), 1998, pp. 5–8.
- [10] GRIGORENKO A.N., NIKITIN P.I., KABASHIN A.V., Phase jumps and interferometric surface plasmon resonance imaging, Applied Physics Letters 75(25), 1999, pp. 3917–3919.
- [11] MANUEL M., VIDAL B., LÓPEZ R., ALEGRET S., ALONSO-CHAMARRO J., GARCES I., MATEO J.,Determination of probable alcohol yield in musts by means of an SPR optical sensor, Sensors and Actuators B 11(1–3), 1993, pp. 455–459.
- [12] ALONSO R., SUBÍAS J., PELAYO J., VILLUENDAS F., TORNOS J., Single-mode, optical-fiber sensors and tunable wavelength filters based on the resonant excitation of metal-clad modes, Applied Optics 33(22), 1994, pp. 5197–5201.
- [13] HOMOLA J., Optical fiber sensor based on surface plasmon resonance excitation, Sensors and Actuators B 29(1–3), 1995, pp. 401–405.
- [14] TUBB A.J.C., PAYNE F.P., MILLINGTON R.B., LOWE C.R., Single-mode optical fibre surface plasma wave chemical sensor, Sensors and Actuators B 41(1–3), 1997, pp. 71–79.
- [15] DÍEZ A., ANDRÉS M.V., CRUZ J.L., In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers, Sensors and Actuators B 73(2–3), 2001, pp. 95–99.
- [16] PILIARIK M., HOMOLA J., MANÍKOVA Z., ČTYROKÝ J., Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber, Sensors and Actuators B 90(1–3), 2003, pp. 236–242.
- [17] MONZON-HERNANDEZ D., VILLATORO J., TALAVERA D., LUNA-MORENO D., Optical-fiber surface plasmon resonance sensor with multiple resonance peaks, Applied Optics 43(6), 2004,pp. 1216–1220.
- [18] GUPTA B.D., SHARMA A.K., Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: A theoretical study, Sensors and Actuators B 107(1), 2005, pp. 40–46.
- [19] MONZÓN-HERNANDEZ D., VILLATORO J., High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor, Sensors and Actuators B 115(1), 2006, pp. 227–231.
- [20] HASSANI A., GAUVREAU B., FASSI FEHRI M., KABASHIN A., SKOROBOGATIY M., Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR, Electromagnetics 28(3), 2008, pp. 198–213.
- [21] HASSANI A., SKOROBOGATIY M., Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics, Optics Express 14(24), 2006, pp. 11616–11621
- [22] HAUTAKORPI M., MATTINEN M., LUDVIGSEN H., Surface-plasmon-resonance sensor based on three--hole microstructured optical fiber, Optics Express 16(12), 2008, pp. 8427–8432.
- [23] PELTON M., MINGZHAO LIU, SUNGNAM PARK, SCHERER N.F., GUYOT-SIONNEST P., Ultrafast resonant optical scattering from single gold nanorods: Large nonlinearities and plasmon saturation, Physical Review B 73(15), 2006, p. 155419.
- [24] ELSER J., WANGBERG R., PODOLSKIY V.A., NARIMANOV E.E., Nanowire metamaterials with extreme optical anisotropy, Applied Physics Letters 89(26), 2006, p. 261102.
- [25] PALIK E.D., Handbook of Optical Constants of Solids, Academic Press, Boston, 1985.
- [26] GAUVREAU B., HASSANI A., FASSI FEHRI M., KABASHIN A., SKOROBOGATIY M.A., Photonic bandgap fiber-based surface plasmon resonance sensors, Optics Express 15(18), 2007, pp. 11413–11426.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0019-0052