Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2011 | Vol. 41, nr 4 | 841--853
Tytuł artykułu

Super-resolution reconstruction for underwater imaging

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to enhance the visual quality of images obtained by underwater imaging systems, super resolution (SR) reconstruction is introduced, including single-frame and multi-frame SR algorithms. Experimental images from a range-gated pulsed laser imaging system are processed by SR algorithms, results are evaluated and compared by blind, objective quality metrics. Results show that the image quality of underwater imaging can be effectively enhanced if the appropriate SR reconstruction algorithm is chosen.
Wydawca

Czasopismo
Rocznik
Strony
841--853
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
autor
autor
autor
autor
  • Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Bibliografia
  • [1] TSAI R.Y., HUANG T.S., Multi-frame image restoration and registration, [In] Advances in Computer Vision and Image Processing, Vol. 1, No. 2, JAI Press Inc., Greenwich, CT, 1984, pp. 317–339.
  • [2] SUNG CHEOL PARK, MIN KYU PARK, MOON GI KANG, Super-resolution image reconstruction: A technical overview, IEEE Signal Processing Magazine 20(3), 2003, pp. 21–36.
  • [3] ZHAO W., SAWHNEY H., HANSEN M., SAMARASEKERA S., Super-fusion: A super-resolution method based on fusion, Proceedings of 16th International Conference on Pattern Recognition, Vol. 2, 2002, pp. 269–272.
  • [4] BOSE N.K., Recursive reconstruction of images from noisy and blurred multiframes, Realization and Modelling in System Theory, Proceedings of the International Symposium MTNS-89, Vol. 1, 1989, pp. 319–24.
  • [5] IRANI M., PELEG S., Improving resolution by image registration, CVGIP: Graphical Models and Image Processing 53(3), 1991, pp. 231–239.
  • [6] PATTI A.J., SEZAN M.I., MURAT TEKALP A., Superresolution video reconstruction with arbitrary sampling lattices and nonzero aperture time, IEEE Transactions on Image Processing 6(8), 1997, pp. 1064–1076.
  • [7] BLU T., THEVENAZ P., UNSER M., Linear interpolation revitalized, IEEE Transactions on Image Processing 13(5), 2004, pp. 710–719.
  • [8] PAPOULIS A., A new algorithm in spectral analysis and band-limited extrapolation, IEEE Transactions on Circuits and Systems CAS-22(9), 1975, pp. 735–742.
  • [9] GERCHBERG R.W., Super-resolution through error energy reduction, Optica Acta 21(9), 1974, pp. 709–720.
  • [10] FERREIRA P.J.S.G., Interpolation and the discrete Papoulis–Gerchberg algorithm, IEEE Transactions on Signal Processing 42(10), 1994, pp. 2596–2606.
  • [11] CHATTERJEE P., MUKHERJEE S., CHAUDHURI S., SEETHARAMAN G., Application of Papoulis–Gerchberg method in image super-resolution and inpainting, Computer Journal 52(1), 2009, pp. 80–89.
  • [12] VANDEWALLE P., SUSSTRUNK S., VETTERLI M., A frequency domain approach to registration of aliased images with application to super-resolution, EURASIP Journal on Applied Signal Processing, No. 10, 2006, p. 14.
  • [13] BERGEN J.R., ANANDAN P., HANNA K.J., Hierarchical model-based motion estimation, Second European Conference on Computer Vision Proceedings, Computer Vision – ECCV’92, pp. 237–252.
  • [14] KEREN D., PELEG S., BRADA R., Image sequence enhancement using sub-pixel displacements, Proceedings CVPR’88: The Computer Society Conference on Computer Vision and Pattern Recognition, pp. 742–746.
  • [15] HAIYING S., XIAOHAI H., WEILONG C.., An improved iterative back-projection algorithm for video super-resolution reconstruction, Proceedings 2010 Symposium on Photonics and Optoelectronics (SOPO 2010), p. 4.
  • [16] FAN F., KECHENG Y., BO F., Application of blind deconvolution approach with image quality metric in underwater image restoration, 2010 International Conference on Image Analysis and Signal Processing (IASP 2010), pp. 236–239.
  • [17] ZOMET A., RAV-ACHA A., PELEG S., Robust super-resolution, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, Vol. 1, pp. 645–650.
  • [18] HOU W., WEIDEMANN A.D., Objectively assessing underwater image quality for the purpose of automated restoration, Proceedings of SPIE 6575, 2007, p. 65750Q.
  • [19] SHEIKH H.R., BOVIK A.C., Image information and visual quality, IEEE Transactions on Image Processing 15(2), 2006, pp. 430–444.
  • [20] HONGWEI H., XIAOHUI Z., WEILONG G., Performance evaluation of underwater range-gated viewing based on image quality metric, Proceedings of the 2009 9th International Conference on Electronic Measurement Instruments (ICEMI 2009), pp. 4–441.
  • [21] FARAJI H., MACLEAN W.J., CCD noise removal in digital images, IEEE Transactions on Image Processing 15(9), 2006, pp. 2676–2685.
  • [22] MING Z., GUNTURK B., A new image denoising method based on the bilateral filter, ICASSP 2008, IEEE International Conference on Acoustic, Speech and Signal Processes, 2008, pp. 929–932.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0019-0043
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.