Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2011 | Vol. 41, nr 3 | 581--591
Tytuł artykułu

Application of dynamic speckle methods to study thermal denaturation of the albumin

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The process of the thermal denaturation of albumin was studied using dynamic speckle methods, which included the time history of speckle patterns (THSP), the THSP based on wavelet entropy (WE), speckle size measurement and the speckle pattern mean contrast techniques. In experiments, the dynamic speckle pattern sequences produced from the albumin colloid during heat denaturation were obtained using CCD camera. And then, using these dynamic speckle methods, the change of the movement properties of protein particles was analyzed during the heating process. All results show that the protein particles become bigger, their mean free path becomes shorter and the velocity of the Brownian movement becomes slower during the heating process. The experiments prove that dynamic speckle methods are useful tools to investigate the particles motion in solution.
Wydawca

Czasopismo
Rocznik
Strony
581--591
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
autor
autor
autor
autor
  • School of Physics and Engineering, Henan University of Science and Technology, Luoyang, 471003, P.R. China
Bibliografia
  • [1] GOETZ J., KOEHLER P., Study of the thermal denaturation of selected proteins of whey and egg by low resolution NMR, LWT – Food Science and Technology 38(5), 2005, pp. 501–512.
  • [2] MCNALLY K.M., SORG B.S., BHAVARAJU N.C., DUCROS M.G., WELCH A.J., DAWES J.M., Optical and thermal characterization of albumin protein solders, Applied Optics 38(31), 1999, pp. 6661–6672.
  • [3] WIERENGA, P.A., VAN NOREL L., BASHEVA E.S., Reconsidering the importance of interfacial properties in foam stability, Colloids and Surfaces A: Physicochemical and Engineering Aspects 344(1–3), 2009, pp. 72–78.
  • [4] MATSUDOMI N., TAKAHASHI H., MIYATA T., Some structural properties of ovalbumin heated at 80 degrees C in the dry state, Food Research International 34(2–3), 2001, pp. 229–235.
  • [5] WARIS B.N., HASAN U., SRIVASTAVA N., Stabilisation of ovalbumin by maltose, Thermochimica Acta 375(1–2), 2001, pp. 1–7.
  • [6] DACOSTA G., Analysis of dynamic phenomena by speckle techniques, Journal of the Optical Society of America 66(10), 1976, pp. 1085–1086.
  • [7] CHIANG F.P., LEE C.H., Dynamic laser speckle interferometry applied to transient flexure problem, Applied Optics 16(12), 1977, pp. 3085–3086.
  • [8] ZHENG B., PLEASS C.M., IH C.S., Feature information extraction from dynamic biospeckle, Applied Optics 33(2), 1994, pp. 231–237.
  • [9] ANGELSKY O.V., MAKSIMYAK P.P., Holographic studies of the dynamic and structural characteristics of biological objects, Optical Engineering 32(2), 1993, pp. 267–270.
  • [10] BRAGA R.A., DAL FABBRO I.M., BOREM F.M., RABELO G., ARIZAGA R., RABAL H.J., TRIVI M., Assessment of seed viability by laser speckle techniques, Biosystems Engineering 86(3), 2003, pp. 287–294.
  • [11] PAJUELO M., BALDWIN G., RABAL H., CAP N., ARIZAGA R., TRIVI M., Bio-speckle assessment of bruising in fruits, Optics and Lasers in Engineering 40(1–2), 2003, pp. 13–24.
  • [12] ANGELSKY O.V., DEMIANOVSKY G.V., USHENKO A.G., BURKOVETS D.N., USHENKO Y.A., Wavelet analysis of two-dimensional birefringence images of architectonics in biotissues for diagnosing pathological changes, Journal of Biomedical Optics 9(4), 2004, pp. 679–690.
  • [13] PIEDERRIÈRE Y., CARIOU J., GUERN Y., LE JEUNE B., LE BRUN G., LORTRIAN J., Scattering through fluids: speckle size measurement and Monte Carlo simulations close to and into the multiple scattering, Optics Express 12(1), 2004, pp. 176–188.
  • [14] HENAO R., RABAL H.J., TAGLIAFERRI A., TORROBA R.D., Digital display of the temporal evolution of speckle patterns, Optical Engineering 35(1), 1996, pp. 63–69.
  • [15] RABAL H.J., ARIZAGA R.A., CAP N.L., TRIVI M., ROMERO G., ALANIS E., Transient phenomena analysis using dynamic speckle patterns, Optical Engineering 35(1), 1996, pp. 57–62.
  • [16] PIEDERRIÈRE Y., LE MEUR J., CARIOU J., ABGRALL J., BLOUCH M., Particle aggregation monitoring by speckle size measurement, application to blood platelets aggregation, Optics Express 12(19), 2004, pp. 4596–4601.
  • [17] PIEDERRIÈRE Y., BOULVERT F., CARIOU J., LE JEUNE B., GUERN Y., LE BRUN G., Backscattered speckle size as a function of polarization: Influence of particle-size and- concentration, Optics Express 13(13), 2005, pp. 5030–5039.
  • [18] FUJII H., ASAKURA T., Contrast variation of image speckle intensity under illumination of partially coherent light, Optics Communications 12(1), 1974, pp. 32–38.
  • [19] GOODMAN J.W., Dependence of image speckle contrast on surface-roughness, Optics Communications 14(3), 1975, pp. 324–327.
  • [20] CHENG H., YAN Y., DUONG T.Q., Temporal statistical analysis of laser speckleimages and its application to retinal blood-flowimaging, Optics Express 16(14), 2008, pp. 10214–10219.
  • [21] CHENG H., DUONG T.Q., Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging, Optics Letters 32(15), 2007, pp. 2188–2190.
  • [22] ZHU D., LU W., WENG Y., CUI H., LUO Q., Monitoring thermal-induced changes in tumor blood flow and microvessels with laser speckle contrast imaging, Applied Optics 46(10), 2007, pp. 1911–1917.
  • [23] KELLY D.J., AZELOGLU E.U., KOCHUPURA P.V., SHARMA G.S., GAUDETTE G.R., Accuracy and reproducibility of a subpixel extended phase correlation method to determine micron level displacements in the heart, Medical Engineering and Physics 29(1), 2007, pp. 154–162
  • [24] BRAGA R.A., HORGAN G.W., ENES A.M., MIRON D., RABELO G.F., FILHO J., Biological feature isolation by wavelets in biospeckle laser images, Computers and Electronics in Agriculture 58(2), 2007, pp. 123–132.
  • [25] PASSONI I., PRA A.D., RABAL H., TRIVI M., ARIZAGA R., Dynamic speckle processing using wavelets based entropy, Optics Communications 246(1–3), 2005, pp. 219–228.
  • [26] MCKINNEY J.D., WEBSTER M.A., WEBB K.J., WEINER A.M., Characterization and imaging in optically scattering media by use of laser speckle and a variable-coherence source, Optics Letters 25(1), 2000, pp. 4–6.
  • [27] BLANCO S., FIGLIOLA A., QUIROGA R.Q., ROSSO O.A., SERRANO E., Time-frequency analysis of electroencephalogram series. III. Wavelet packets and information cost function, Physical Review E 57(1), 1998, pp. 932–940.
  • [28] AYERS M.R., HUNT A.J., Observation of the aggregation behavior of silica sols using laser speckle contrast measurements, Journal of Non-Crystalline Solids 290(2-3), 2001, pp. 122–128.
  • [29] CHICEA D., Coherent light scattering on nanofluids: Computer simulation results, Applied Optics 47(10), 2008, pp. 1434–1442.
  • [30] GUERIN-DUBIARD C., PASCO M., HIETANEN A., DEL BOSQUE A.Q., NAU F., CROGUENNEC T., Hen egg white fractionation by ion-exchange chromatography, Journal of Chromatography A 1090(1–2), 2005, pp. 58–67.
  • [31] HUNTINGTON J.A., STEIN P.E., Structure and properties of ovalbumin, Journal of Chromatography B 756(1–2), 2001, pp. 189–198.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0018-0038
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.