Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2009 | Vol. 39, nr 3 | 459-465
Tytuł artykułu

The study of the good polishing method for polymer SU-8 waveguide

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research focused on polish characteristic of polymer based waveguides. The aim of the research was to show how polishing parameters affect the cut length of the end surface of SU-8 polymer on silicon and to detemine the best parameters for polishing SU-8 polymer. Then, four samples were used for characterizing the polishing of polymer. Each sample was polished with the same rotation and sandpaper size but with different rotational speed. The experiment result shows that the best rotational speed for polishing polymer SU-8 sample on silicon is 200 rpm.
Wydawca

Czasopismo
Rocznik
Strony
459-465
Opis fizyczny
bibliogr. 18 poz.,
Twórcy
autor
autor
autor
autor
autor
autor
  • Department of Electrical, Electronic & System Engineering, Faculty of Engineering & Build Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor
Bibliografia
  • [1] ELDADA L., Polymer integrated optics: Promise vs. practicality, Proceedings of SPIE 4642, 2002, pp. 11–22.
  • [2] GANG S.Y., Polymer based optical waveguides, faculty of electrical engineering, Thesis Master of Engineering, Universiti Teknologi Malaysia, 2005.
  • [3] HUNSPERGER R.G., Integrated Optics: Theory and Technology, Springer-Verlag, 1982.
  • [4] RUBIN R., Fiber optic connector: Meeting polishing demands, Photonics Spectra, November 2003.
  • [5] TAMAKI K., TAKASE H., ERIYAMA Y., UKACHI T., Recent progress on polymer waveguide materials, Journal of Photopolymer Science and Technology 16(5), 2003, pp. 639–648.
  • [6] TUNG K.K., WONG W.H., PUN E.Y.B., Polymeric optical waveguides using direct ultraviolet photolithography process, Applied Physics A: Materials Science and Processing 80(3), 2005, pp. 621–625.
  • [7] MA C., VAN KEUREN E., New design of a beam-steering thermooptic multimode polymer waveguide switch, Applied Physics B: Lasers and Optics 85(4), 2006, pp. 619–623.
  • [8] BEALS J., BAMIEDAKIS N., WONFOR A., PENTY R.V., WHITE I.H., DEGROOT J.V., HUESTON K., CLAPP T.V., GLICK M., A terabit capacity passive polymer optical backplane based on a novel meshed waveguide architecture, Applied Physics A: Materials Science and Processing 95(4), 2009, pp. 983–988.
  • [9] NAKAI T., UENO Y., KANEKO K., TANAHASHI S., TAKEDA S., A siloxane polymer lightwave circuit on ceramic substrate applicable to ultrafast optoelectronic multi-chip-modules, Optical and Quantum Electronics 33(7–10), 2001, pp. 1113–1124.
  • [10] YU H.H., HWANG S.J., Investigations of the E-O behavior in the poled polymer waveguide, Optical and Quantum Electronics 36(15), 2004, pp. 1303–1311.
  • [11] TANG H.Y., WONG W.H., PUN E.Y.B., Long period polymer waveguide grating device with positive temperature sensitivity, Applied Physics B: Lasers and Optics 79(1), 2004, pp. 95–98.
  • [12] LIU Z., YU J., ZHU D., Design of a new type of electro-optic polymer waveguide modulator with ultrahigh bandwith, International Journal of Infrared and Millimeter Waves 27(5), 2006, pp. 707–724.
  • [13] OHKITA H., ISHIBASHI K., TSURUMOTO D., TAGAYA A., KOIKE Y., Compensation of the photoelastic birefringence of a polymer by doping with an anisotropic molecule, Applied Physics A: Materials Science and Processing 81(3), 2005, pp. 617–620.
  • [14] CHANG W.C., YARN K.F., CHUANG W.C., Polymer nano-Bragg grating waveguide using MEMS process, Digest Journal of Nanomaterials and Biostructures 4(1), 2009, pp. 199–204.
  • [15] UDDIN M.A., CHAN H.P., The challenges in the fabrication of reliable polymer photonic devices, Journal of Materials Science: Materials in Electronics 20(Supplement 1), 2009, pp. S277–S281.
  • [16] LIU Z., ZHU D., A low-loss electro-optic waveguide polymer modulator and its optimization design, Optical and Quantum Electronics 37(10), 2005, pp. 949–963.
  • [17] DELL’OLIO F., PASSARO V.M.N., DE LEONARDIS F., Simulation of a high speed interferometer optical modulator in polymer materials, Journal of Computational Electronics 6(1–3), 2007, pp. 297–300.
  • [18] UDDIN M.A., HO W.F., CHOW C.K., CHAN H.P., Interfacial adhesion of spin-coated thin adhesive film on silicon substrate for the fabrication of polymer optical waveguide, Journal of Electronic Materials 35(7), 2006, pp. 1558–1565.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0011-0041
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.