Czasopismo
2009
|
Vol. 39, nr 1
|
31--41
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The detection performance of conventional surface plasmon resonance (SPR) biosensors is limited by its own mechanism. Recently, novel highly sensitive SPR biosensors with Au nanoparticles enhancement are proposed to detect the interaction of small molecules in low concentrations. In this study, the effect of Au nanoparticles enhancement is firstly calculated by using the Maxwell-Garnett effective medium theory (EMT). Then, the influence of different structural parameters of nanoparticles embedded film on the performance is thoroughly investigated by the rigorous coupled wave analysis (RCWA). Electric field distributions in the nanoparticles embedded film are also given. The results strongly indicate that the sensitivity improvement can be achieved by adding a nanoparticle embedded film with optimal structural parameters. The simulation method of RCWA is also proved to be a powerful tool to optimize nanoparticles embedded film based biosensor.
Czasopismo
Rocznik
Tom
Strony
31--41
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
autor
- National Key Laboratory of Micro/Nano Fabrication Technology, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai, 200240,
Bibliografia
- [1] KRETSCHMANN E., RAETHER H., Radiative decay of non-radiative surface plasmons excited by light, Zeitschrift für Naturforschung A 23A(12), 1968, pp. 2135–2136.
- [2] OTTO A., Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection, Zeitschrift für Physik A 216(4), 1968, pp. 398–410.
- [3] FLANAGAN M.T., PANTELL R.H., Surface plasmon resonance and immunosensors, Electronics Letters 20(23), 1984, pp. 968–970.
- [4] LUNDSTRÖM I., Real-time biospecific interaction analysis, Biosensors and Bioelectronics 9(9–10), 1994, pp. 725–736.
- [5] HE L., MUSICK M.D., NICEWARNER S.R., SALINAS F.G., BENKOVIC S.J., NATAN M.J., KEATING C.D., Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization, Journal of the American Chemical Society 122(38), 2000, pp. 9071–9077.
- [6] MALINSKY M.D., KELLY K.L., SCHATZ G.C., VAN DUYNE R.P., Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers, Journal of the American Chemical Society 123(7), 2001, pp. 1471–1482.
- [7] HAES A.J., VAN DUYNE R.P., A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles, Journal of the American Chemical Society 124(35), 2002, pp. 10596–10604.
- [8] MCFARLAND A.D., VAN DUYNE R.P., Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity, Nano Letters 3(8), 2003, pp. 1057–1062. Investigation of highly sensitive surface plasmon resonance biosensors ... 41
- [9] CHEN S.-J., CHIEN F.C., LIN G.Y., LEE K.C., Enhancement of the resolution of surface plasmon resonance biosensors by control of the size and distribution of nanoparticles, Optics Letters 29(12), 2004, 1390–1392.
- [10] HU W.P., CHEN S.J., HUANG K.T., HSU J.H., CHEN W.Y., CHANG G.L., LAI K.-A., A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film, Biosensors and Bioelectronics 19(11), 2004, pp. 1465–1471.
- [11] KYUNG BYUN, SUNG KIM, DONGHYUN KIM, Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis, Optics Express 13(10), 2005, pp. 3737–3742.
- [12] PALIK E.D. [Ed.], Handbook of Optical Constants of Solids, Academic Press, Orlando 1985.
- [13] MAXWELL-GARNETT J.C., Colours in metal glasses and in metallic films, Philosophical Transactions of the Royal Society of London, Series A 203, 1904, pp. 385–420.
- [14] LEUNG P.T., POLLARD-KNIGHT D., MALAN G.P., FINLAN M.F., Modelling of particle-enhanced sensitivity of the surface-plasmon-resonance biosensor, Sensors and Actuators B 22(3), 1994, pp. 175–180.
- [15] UNG T., LIZ-MARZAN L.M., MULVANEY P., Gold nanoparticle thin films, Colloids and Surfaces A 202(2–3), 2002, pp. 119–126.
- [16] MOHARAM M.G., GAYLORD T.K., Diffraction analysis of dielectric surface-relief gratings, Journal of the Optical Society of America 72(10), 1982, pp. 1385–1392.
- [17] MOHARAM M.G., GAYLORD T.K., Rigorous coupled-wave analysis of metallic surface-relief gratings, Journal of the Optical Society of America A 3(11), 1986, pp. 1780–1787.
- [18] KANAMORI Y., HANE K., SAI H., YUGAMI H., 100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask, Applied Physics Letters 78(2), 2001, pp. 142–143.
- [19] SUNTAK PARK, GWANSU LEE, SEOK-HO SONG, CHA-HWAN OH, PILL-SOO KIM, Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings, Optics Letters 28(20), 2003, pp. 1870–1872.
- [20] KIM K, YOON S. J, KIM D., Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study, Optics Express 14(25), 2006, pp. 12419–12431.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0011-0003