Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2008 | Vol. 38, nr 4 | 715-726
Tytuł artykułu

Pure rotational Raman lidar with fiber Bragg grating for temperature profiling of the atmospheric boundary layer

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new pure rotational Raman lidar (PRRL) system at a wavelength of 532.25 nm has been designed for profiling the atmospheric temperature of the planetary boundary layer. A newly compact spectroscope structured with three fiber Bragg gratings (FBG) is designed to separate two pure rotational Raman signals for atmospheric temperature retrieval, and to simultaneously block the Mieand Rayleigh-scattering signals with a rejection rate of 107. A numerical simulation shows that the PRRL is capable of profiling the atmospheric temperature and a statistical temperature error less than 1 K is achieved up to a height of 2.0 km and 2.2 km for daytime and nighttime measurement, respectively.
Wydawca

Czasopismo
Rocznik
Strony
715-726
Opis fizyczny
Bibliogr. 14 poz.,
Twórcy
autor
autor
autor
autor
autor
  • School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, No. 5 South Jinhua Road, Xi'an 710048, China
Bibliografia
  • [1] HUA D., UCHIDA M., KOBAYASHI T., Ultraviolet Rayleigh–Mie lidar with Mie-scattering correction by Fabry–Perot etalons for temperature profiling of the troposphere, Applied Optics 44(7), 2005, pp. 1305–13.
  • [2] LIU J., HUA D., LI Y., Rotational Raman lidar for daytime-temperature profiling of the atmospheric boundary layer, Acta Optica Sinica 27(5), 2007, pp. 755–59.
  • [3] COONEY J., Measurement of atmospheric temperature profiles by Raman backscatter, Journal Applied Meteorology 11(1), 1972, pp. 108–12.
  • [4] HUA D., LIU J., KOBAYASHI T., Daytime temperature profiling of planetary boundary layer with ultraviolet rotational Raman lidar, Japanese Journal Applied Physics 46(9A), 2007, pp. 5849–52.
  • [5] ARSHINOV Y.F., BOBROVNIKOV S.M., ZUEV V.E., MITEV V.M., Atmospheric temperature measurements using a pure rotational Raman lidar, Applied Optics 22(19), 1983, pp. 2984–90.
  • [6] BEHRENDT A., NAKAMURA T., ONISHI M., BAUMGRAT R., TSUDA T., Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient, Applied Optics 41(36), 2002, pp. 7657–66.
  • [7] KIM D., CHA H., Pure rotational Raman lidar for atmospheric temperature measurements, Journal of the Korean Physical Society 39(5), 2001, pp. 838–41.
  • [8] NEDELJKOVIC D., HAUCHECORNE A., CHANIN M., Rotationsl raman lidar to measure the atmospheric temperature from the ground to 30 Km, IEEE Trans. Geosci. Remote Sens. 31(1), 1993, pp. 90–101.
  • [9] BALIN I., SERIKOV I., BOBROVNIKOV S., SIMEONOV V., CALPINI B., ARSHINOV Y., BERGH H.V.D., Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational-pure–rotational Raman lidar, Applied Physics B. 79(6), 2004, pp. 775–82.
  • [10] BEHRENDT A., REICHARDT J., Atmospheric temperature profiling in the presence of clouds with a pure roatational Raman lidar by use of an interference-filter based polychromator, Applied Optics 39(9), 2000, pp. 1372–8.
  • [11] STENHOLM I., DEYOUNG R.J., Ultra narrowband optical filters for water vapor differential absorption lidar (DIAL) atmospheric measurements, NASA/TM-2001-211261, 2001, p. 20.
  • [12] BI W., LI L., CHEN J., LI L., Least narrowband spectrum properties of fiber Bragg grating, Journal of Applied Optics 28(2), 2007, pp. 212–5 (in Chinese).
  • [13] JENNESS J.R., Jr., LYSAK D.B., Jr., PHILBRICK C.R., Design of a lidar receiver with fiber-optic output, Applied Optics 36(18), 1997, pp. 4278–84.
  • [14] GAO F., HUA D., WU M., MAO J., ZHOU Y., Effect of M2 factor of laser beam for a non-coaxial lidar system, Acta Optica Sinica 28(9), 2008, pp. 1649–54 (in Chinese).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0009-0064
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.