Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2006 | Vol. 36, nr 2-3 | 359-371
Tytuł artykułu

Investigation of deep defects using generation-recombination noise

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Noise spectroscopy is an effective tool to characterize the quality of semiconductor bulk and surface and a figure of merit for device quality as a whole. In certain cases, low-frequency noise can be used for the evaluation of device reliability. Further, measurements of the noise characteristics of GaAs materials are a useful technique when it comes to studying deep defects exhibiting a thermally activated capture. In the paper we present the technique of noise spectroscopy and illustrate it with some applications. They include photocapacitive and noise measurements on a deep DX-like defect which gives rise to persistent photoconductivity in Mg-doped p-type GaN films. We also apply DLTS, photoconductivity and noise spectroscopy to characterize n-type bulk GaAs and an EL2-related metastable defect. The third example illustrates experimental results on the photoconductivity and noise of forward and reverse biased Al0.3Ga0.7N/GaN-based Schottky barriers. In the light of these results the nature and origin of the responsible centers are discussed.
Słowa kluczowe
Wydawca

Czasopismo
Rocznik
Strony
359-371
Opis fizyczny
Bibliogr. 30 poz.,
Twórcy
autor
  • University of Iceland, IS-107 Reykjavik, Iceland
Bibliografia
  • [1] HAUTAKANGAS S., OILA J., ALATALO M., SAARINEN K., LISZKAY L., SEGHIER D., GISLASON H.P., Vacancy defects as compensating centers in Mg-doped GaN, Physical Review Letters 90(13), 2003, pp. 137402/1–4.
  • [2] KOZODOY P., HUILI XING, DENBAARS S.P., MISHRA U.K., SAXLER A., PERRIN R., ELHAMRI S., MITCHEL W.C., Heavy doping effects in Mg-doped GaN, Journal of Applied Physics 87(4), 2000, pp. 1832–5.
  • [3] CHEN H.M., CHEN Y.F., LEE M.C., FENG M.S., Persistent photoconductivity in n-type GaN, Journal of Applied Physics 82(2), 1997, pp. 899–901.
  • [4] SOH C.B., CHUA S.J., LIM H.F., CHI D.Z., TRIPATHY S., LIU W., Assignment of deep levels causing yellow luminescence in GaN, Journal of Applied Physics 96(3), 2004, pp. 1341–7.
  • [5] KATZ O., BAHIR G., SALZMAN J., Persistent photocurrent and surface trapping in GaN Schottky ultraviolet detectors, Applied Physics Letters 84(20), 2004, pp. 4092–4.
  • [6] KIPSHIDZE G., KURYATKOV V., BORISOV B., KUDRYAVTSEV YU., ASOMOZA R., NIKISHIN S., TEMKIN H., Mg and O codoping in p-type GaN and AlxGa1–xN (0 < x < 0.08), Applied Physics Letters 80(16), 2002, pp. 2910–2.
  • [7] KIM K.S., HAN M.S., YANG G.M., YOUN C.J., LEE H.J., CHO H.K., LEE J.Y., Codoping characteristics of Zn with Mg in GaN, Applied Physics Letters 77(8), 2000, pp. 1123–5.
  • [8] KIRTLEY J.R., THEIS T.N., MOONEY P.M., WRIGHT S.L., Noise spectroscopy of deep level (DX) centers in GaAs-AlxGa1–xAs heterostructures, Journal of Applied Physics 63(5), 1988, pp. 1541–8.
  • [9] GYU-CHUL YI, WESSELS B.W., Deep level defects in n-type GaN compensated with Mg, Applied Physics Letters 68(26), 1996, pp. 3769–71.
  • [10] BEADIE G., RABINOVICH W.S., WICKENDEN A.E., KOLESKE D.D., BINARI S.C., FREITAS J.A., JR., Persistent photoconductivity in n-type GaN, Applied Physics Letters 71(8), 1997, pp. 1092–4.
  • [11] JOHNSON C., LIN J.Y., JIANG H.X., ASIF KHAN M., SUN C.J., Metastability and persistent photoconductivity in Mg-doped p-type GaN, Applied Physics Letters 68(13), 1996, pp. 1808–10.
  • [12] SEGHIER D., GISLASON H.P., Correlation between deep levels the persistent photoconductivity Mg-doped GaN grown MOCVD, Journal of Physics D: Applied Physics 35(4), 2002, pp. 291–4.
  • [13] HOOGE F.N., 1/f noise is no surface effect, Physics Letters A 29(3), 1969, pp. 139–40.
  • [14] RICE A.K., MALLOY K.J., Bulk noise processes and their correlation to structural imperfections in magnesium-doped p-type GaN grown on sapphire, Journal of Applied Physics 87(11), 2000, pp. 7892–5.
  • [15] GOENNENWEIN S.T.B., ZEISEL R., BALDOVINO S., AMBACHER O., BRANDT M.S., STUTZMANN M., Defect -related noise in AlN and AlGaN alloys, Physica B 308–310, 2001, pp. 69–72.
  • [16] VON BARDELEBEN H.J., STIEVENARD D., DERESMES D., HUBER A., BOURGOIN J.C., Identification of a defect in a semiconductor: EL2 in GaAs, Physical Review B: Condensed Matter 34(10), 1986, pp. 7192–202.
  • [17] JELLISON G.E., JR., Transient capacitance studies of an electron trap at Ec – ET = 0.105 eV In phosphorus-doped silicon, Journal of Applied Physics 53(8), 1982, pp. 5715–9.
  • [18] FUKUYAMA A., IKARI T., AKASHI Y., SUEMITSU M., Interdefect correlation during thermal recovery of EL2 in semi-insulating GaAs: proposal of a three-center-complex model, Physical Review B: Condensed Matter and Materials Physics 67(11), 2003, pp. 113202-1–4.
  • [19] ALVAREZ A., JIMENEZ J., GONZALEZ M.A., Metastable transformation of EL2 in semi-insulating GaAs: the role of the actuator level and the photoionization of EL2, Applied Physics Letters 68(21), 1996, pp. 2959–61.
  • [20] AGAWA K., HIRAKAWA K., SAKAMOTO N., HASHIMOTO Y., IKOMA T., Electrical properties of heavily Si-doped (311)A GaAs grown by molecular beam epitaxy, Applied Physics Letters 65(9), 1994, pp. 1171–3.
  • [21] ALVAREZ A., JIMENEZ J., GONZALEZ M.A., SANZ L.F., Temperature dependence of the photoquenching of EL2 in semi-insulating GaAs, Applied Physics Letters 70(23), 1997, pp. 3131–3.
  • [22] HUBIK P., KRISTOFIK J., MARES J.J., MALY J., HULICIUS E., PANAGRAC J., Deep levels in GaAs due to Si delta doping, Journal of Applied Physics 88(11), 2000, pp. 6488–94.
  • [23] ASIF KHAN M., SHUR M.S., CHEN Q., Hall measurements and contact resistance in doped GaN/AlGaN heterostructures, Applied Physics Letters 68(21), 1996, pp. 3022–4.
  • [24] WU J.F., KELLER B.P., KELLER S., KAPOLNEK D., KOZODOY P., DENBAARS S.P., MISHRA U.K., High power AlGaN/GaN HEMTs for microwave applications, Solid State Electronics 41(10), 1997, pp. 1569–74.
  • [25] STRITE S.C., MOKOC H., GaN, AlN, and InN: a review, Journal of Vacuum Science and Technology B: Microelectronics Processing and Phenomena 10(4), 1992, pp. 1237–66.
  • [26] HIRSCH M.T., WOLK J.A., WALUKIEWICZ W., HALLER E.E., Persistent photoconductivity in n-type GaN, Applied Physics Letters 71(8), 1997, pp. 1098–100.
  • [27] NOZAKI S., FEICK H., WEBER E.R., MICOVIC M., NGUYEN C., Compression of the dc drain current by electron trapping in AlGaN/GaN modulation doped field-effect transistors, Applied Physics Letters 78(19), 2001, pp. 2896–8.
  • [28] SEGHIER D., GISLASON H.P., Low-frequency noise in AlGaN-based Schottky barriers, [In] Physics of Semiconductors: 27th International Conference on the Physics of Semiconductors – ICPS-27, J. Menendez, C.G. Van de Walle [Eds.], 2005, pp. 433–4.
  • [29] RUMYANTSEV S.L., PALA N., SHUR M.S., BORVISTSKAYA E., DMITRIEV A.P., LEVINSHTEIN M.E., GASKA R., KHAN M.A., YANG J., HU X., SIMIN G.S., Generation-recombination noise in GaN/AlGaN heterostructure field effect transistors, IEEE Transactions on Electron Devices 48(3), 2001, pp. 530–4.
  • [30] NGUYEN C., NGUYEN N.X., GRIDER D.E., Drain current compression in GaN MODFETs under large-signal modulation at microwave frequencies, Electronics Letters 35(16), 1999, pp. 1380–9.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0002-0078
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.