Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2006 | Vol. 36, nr 2-3 | 297-309
Tytuł artykułu

Investigation of segregation by quantitative transmission electron microscopy

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The segregation effect occuring during molecular beam epitaxy and metalorganic vapour phase epitaxy growth of ternary III-V semiconductor heterostructures was investigated by quantitative transmission electron microscopy (QTEM) and by simulation of optical properties. The concentration distribution of various III-V semiconductor heterostructures was measured by QTEM and averaged along the direction perpendicular to the growth direction. Resulting concentration profiles could be well fitted using the model of Muraki et al. (Muraki K., Fukatsu S., Shiraki Y., Ito R., Appl. Phys. Lett. 61(5), 1992, p. 557) yielding the segregation efficieny R. For the investigation of the effect of segregation on the photoluminescence, concentration profiles for different segregation efficiencies were simulated and photoluminescence peak energies were derived by solving Schrödinger's equation for spatially varying potentials deduced from the measured concentration profiles.
Słowa kluczowe
Wydawca

Czasopismo
Rocznik
Strony
297-309
Opis fizyczny
Bibliogr. 26 poz.,
Twórcy
autor
autor
  • Universitat Bremen, otto-Hallee 1, 28359 Bremen, Germany
Bibliografia
  • [1] CHIANG T.-C., LUDEKE R., EASTMAN D.E., Photoemission studies of AlxGa1–xAs(100) surfaces gron by molecular-beam epitaxy, Physical Review B: Condensed Matter 25(10), 1982, pp. 6518–21.
  • [2] STALL R.A., ZILKO J., SWAMINATHAN V., SCHUMAKER N., Morphology of GaAs and AlxGa1–xAs grown by molecular beam epitaxy, Journal of Vacuum Science and Technology B: Microelectronics Processing and Phenomena 3(2), 1985, pp. 524–7.
  • [3] MASSIES J., TURCO F., SALETES A., CONTOUR J.P., Experimental evidence of difference in surface and bulk compositions of AlxGa1–xAs, AlxIn1–xAs and Gax In1–xAs epitaxial layers grown by molecular beam epitaxy, Journal of Crystal Growth 80(2), 1987, pp. 307–14.
  • [4] MOISON J.M., GUILLE C., HOUZAY F., BARTHE F., VAN ROMPAY M., Surface segregation of third-column atoms in group III-V arsenide compounds: ternary alloys and heterostructures, Physical Review B:Condensed Matter 40(9), 1989, pp. 6149–62.
  • [5] DEHAESE O., WALLART X., MOLLOT F., Kinetic model of element III segregation during molecular beam epitaxy of III-III'-V semiconductor compounds, Applied Physics Letters 66(1), 1995, pp. 52–4.
  • [6] ROSENAUER A., GERTHSEN D., VAN DYCK D., ARZBERGER M., BÖHM G., ABSTREITER G., Quantification of segregation and mass transport in InxGa1–xAs/GaAs Stranski–Krastanow layers, Physical Review B: Condensed Matter and Materials Physics 64(24), 2001, pp. 245334/1–15.
  • [7] GERARD J.-M., In situ probing at the growth temperature of the surface composition of (InGa)As and (InAl)As, Applied Physics Letters 61(17), 1992, pp. 2096–8.
  • [8] TOYOSHIMA H., NIWA T., YAMAZAKI J., OKAMOTO A., In surface segregation and growth-mode transition during InGaAs growth by molecular-beam epitaxy, Applied Physics Letters 63(6), 1993, pp. 821–3.
  • [9] WALTHER T., CULLIS A.G., NORRIS D.J., HOPKINSON M., Nature of the Stranski–Krastanow transition during epitaxy of InGaAs on GaAs, Physical Review Letters 86(11), 2001, pp. 2381–4.
  • [10] CULLIS A.G., NORRIS D.J., WALTHER T., MIGLIORATO M.A., HOPKINSON M., Stranski–Krastanow transition and epitaxial island growth, Physical Review B: Condensed Matter and Materiale Physics 66(8), 2002, pp. 81305/1–4.
  • [11] EVANS K.R., KASPI R., EHRET J.E., SKOWRONSKI M., JONES C.R., Surface chemistry evolution during molecular beam epitaxy growth of InGaAs, Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures 13(4), 1995, pp. 1820–3.
  • [12] GARCIA J.M., SILVEIRA J.P., BRIONES F., Strain relaxation and segregation effects during self-assembled InAs quantum dots formation on GaAs(001), Applied Physics Letters 77(3), 2000, pp. 409–11.
  • [13] MARTINI S., QUIVY A.A., DA SILVA E.C.F., LEITE J.R., Real-time determination of the segregation strength of indium atoms in InGaAs layers grown by molecular-beam epitaxy, Applied Physics Letters 81(15), 2002, pp. 2863–5.
  • [14] MURAKI K., FUKATSU S., SHIRAKI Y., ITO R., Surface segregation of In atoms during molecular beam epitaxy and its influence on the energy levels in InGaAs/GaAs quantum wells, Applied Physics Letters 61(5), 1992, pp. 557–9.
  • [15] ROSENAUER A., Transmission Electron Microscopy of Semiconductor Nanostructures: An Analysis of Composition and Strain State, (Springer Tracts in Modern Physics) Heidelberg, Springer 2003, p. 182.
  • [16] ROSENAUER A., SCHOWALTER M., GLAS F., LAMOEN D., First-principles calculations of 002 structure factors for electron scattering in strained InxGa1–xAs, Physical Review B: Condensed Matter and Materials Physics 72(8), 2005, pp. 85326/1–10.
  • [17] LARIVE M., NAGLE J., LANDESMANN J.P., MARCADET X., MOTTET C., BOIS P., In situ core-level photoelectron spectroscopy study of indium segregation at GaInAs/GaAs heterojunctions grown by molecular-beam epitaxy, Journal of Vacuum Science and Technology B: Microelectronics Processing and Phenomena 11(4), 1993, pp. 1413–7.
  • [18] KASPI R., EVANS K.R., Improved compositional abruptness at the InGaAs on GaAs interface by presaturation with In during molecular-beam epitaxy, Applied Physics Letters 67(6), 1995, pp. 819–21.
  • [19] SCHOWALTER M., ROSENAUER A., GERTHSEN D., GRAU M., AMANN M.-C., Quantitative measurement of the influence of growth interruptions on the Sb distribution of GaSb/GaAs quantum wells by transmission electron microscopy, Applied Physics Letters 83(15), 2003, pp. 3123–5.
  • [20] ROSENAUER A., VAN DYCK D., ARZBERGER M., ABSTREITER G., Compositional analysis based on electron holography and a chemically sensitive reflection , Ultramicroscopy 88(1), 2001, pp. 51–61.
  • [21] PISCOPIELLO E., ROSENAUER A., PASSASEO A., MONTOYA ROSSI E.H., VAN TENDELOO G., Segregation in InxGa1–xAs/GaAs Stranski–Krastanow layers grown by metal-organic chemical vapour deposition, Philosophical Magazine 85(32), 2005, pp. 3857–70.
  • [22] REITHMAIER J.P., PhD Thesis, Technische Universität München, Germany 1990.
  • [23] VARSHNI Y.P., Temperature dependence of the energy gap in semiconductors, Physica 34(1), 1967, pp. 149–54. Investigation of segregation by quantitative transmission electron microscopy 309
  • [24] DE LA CRUZ G.G., The influence of surface segregation on the optical properties of quantum wells, Journal of Applied Physics 96(7), 2004, pp. 3752–5.
  • [25] CHIRLIAS E., MASSIES J., MARCADET X., GUYAUX J.L., GRATTEPAIN C., In situ etching at InGaAs/GaAs quantum well interfaces, Journal of Crystal Growth 222(3), 2001, pp. 471–6.
  • [26] DISSEIX P., LEYMARIE J., VASSON A., VASSON A.-M., MONIER C., GRANDJEAN N., LEROUX M., MASSIES J., Optical study of segregation effects on the electronic properties of molecular-beam-epitaxy grown (In,Ga)As/GaAs quantum wells, Physical Review B: Condensed Matter 55(4), 1997, pp. 2406–12.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0002-0073
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.