Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | Vol. 23, No. 1 | 61--68
Tytuł artykułu

Carbon-silica sol-gel derived nanomaterials

Warianty tytułu
Konferencja
Sol-Gel Materials Research, Technology, Applications SGM'04, 6-11 june 2004
Języki publikacji
EN
Abstrakty
EN
The preparation of sol-gel derived silica-based nanomaterials containing electrical conductive carbon fillers in an extensive composition range is described and their electrical properties are presented. Nanomaterials of carbon filler concentrations up to 60% (v/v) were obtained by dip coating or screen-printing from precursors of hydrolysed alkoxysilanes. Nanostructured morphology could be identified to consist of homogeneously dispersed carbon black particles or carbon fibres of 30 to 500 nm in size in a modified silica matrix. The electrical resistivity of the films changes drastically from 1010 to 10-1 omega cm, according to the amount of dispersed conductive particles. A threshold between 5 and 50% (v/v), at which the resistance abruptly decreases, was determined. A geometrical model related to percolation theory explains this non-linear dependence on the filler composition in the materials. Moreover the temperature dependence of resistance and the current-voltage characteristics of the nanomaterials can also be illustrated using this geometric model.
Wydawca

Rocznik
Strony
61--68
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
  • Bundesanstalt für Materialforschung und -prüfung (BAM), D-12203 Berlin, Germany
autor
Bibliografia
  • [1] WARREN W.L. LENAHAN P.M., BRINKER C.J., SHAFFER R.G., ASHLEY C.S., REED S.T., Sol-Gel ThinFilm Electronic Properties, Mat. Res. Soc. Symp. Proc.,180 (1990), 413.
  • [2] SAKKAS S., KOZUKA H., J. Sol-Gel Sci. Technol., 13 (1998), 701.
  • [3] INNOCENCI P., KOZUKA H., J. Sol-Gel Sci. Technol., 3 (1994), 229.
  • [4] MENNING M., SCHMITT M., SCHMIDT H., J. Sol-Gel Sci. Technol., 13 (1998), 701.
  • [5] TRAPALIS C.C., KOKKORIS M., PEDIKADIS G., KORDAS G., J. Sol-Gel Sci. Technol., 26 (2003), 1213.
  • [6] LUTZ T., ESTOURNES C., GUILLE J. L., J. Sol-Gel Sci. Technol., 13 (1998), 929.
  • [7] FLADIN L., PRASSE T., SCHUELER R., SCHULTE K., BAUHOFER W., CAVAILLE J.-Y., Phys. Rev. B 59 (1999), 14349.
  • [8] NAKAMURA S., SAITO K., SAWA G., KITAGAWA K., Jpn. J. Appl. Phys., 36 (1997), 5163.
  • [9] ORLIKOWSKI J., J. Corr. Measurement, 2 (2002), http://www.korozja.pl/4-01-02.pdf.
  • [10] TSIONSKY M., GUN G., GLEZER V., LEV O., Anal. Chem. 66 (1994), 1747.
  • [11] OPALLO M., SACZEK-MAJ M., Chem. Comm. (2002) 448.
  • [12] PRODROMIDIS M., KARAYANNIS M., Electroanalysis 14 (2002), 241.
  • [13] BUNDEA., HAVLIN S., Fractals and Disordered Systems, Springer-Verlag, Berlin, 1996.
  • [14] FUJIKI K., OGASAWARA T., TSUBOKAWA N., J. Mater. Sci., 33 (1988), 1871.
  • [15] KUSY A., LISTKIEWICZ E., Solid State Electronics, 31 (1988), 821.
  • [16] SHIMAMURA A., Thesis, Technical University of Ilmenau, 2003.
  • [17] JÄGER K-M., MCQUEEN D.H., TCHMUTIN I.A., RYVKINA N.G., KLÜPPEL M., J. Phys. D: Appl. Phys. 34 (2001), 2699.
  • [18] HIDDEN G. et al., J. Optoelectronics and Advanced Materials, 6 (2004), 1065.
  • [19] CARLBERG C. BLACHEN S., GUBBELS F., BROUERS F., DELTOUR R., JÉRÔME R., J. Phys. D:Appl. Phys., 32 (1999), 1517.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0002-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.