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Abstract: In contrast to laboratory lifetime tests reliability field tests are usually performed 

in conditions which vary in time in a random way. We consider the case when users are 

asked about their description of their vague perceptions of the usage conditions. In the 

paper we use interval-valued variables for the description of imprecisely known test 

conditions that may be used as covariates in classical reliability models. We present a 

simple approximate algorithm for a proportional hazard lifetime model. 
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Streszczenie. W przeciwieństwie do badań niezawodnościowych prowadzonych w 

warunkach laboratoryjnych badania prowadzone w warunkach normalnej eksploatacji 

prowadzone są w warunkach, które w sposób losowy zmieniają się w czasie. W pracy 

rozpatrywany jest przypadek, gdy warunki eksploatacji opisane w sposób nieprecyzyjny w 

postaci przedziałowej. Użyte do tego celu zmienne przedziałowe zostały zastosowane jako 

zmienne stowarzyszone w klasycznych modelach niezawodnościowych typu 

proporcjonalnego hazardu.  

 

Słowa kluczowe: dane z eksploatacji, dane przedziałowe, proporcjonalny hazard  

mailto:hryniewi@ibspan.waw.pl


Hryniewicz O. 

 
 

62 

1. Introduction 
 

In classical textbooks on lifetime data it is usually assumed that all data are 

acquired from precisely described tests such as e.g. laboratory tests. Statistical 

analysis of reliability data acquired from such tests is relatively simple, especially 

when the test is based on either type-I censoring or type-II censoring schemes. 

Pertinent statistical methods have been described in numerous papers and 

textbooks. The situation is more complicated when tests of individual items are 

performed in different conditions, as in e.g. accelerated life tests. Mathematical 

models that are useful for the description of such lifetime data are well known but 

not so popular. We present some of them in the second section of this paper. 

 

When lifetime data are collected from field experiments performed in real 

conditions the situation is much more complicated. We face in this case imprecise 

information of different kind. For example, failures are reported with unknown 

delay and their precise values are not known. Also the working condition may be 

varying in time in a way which precludes their precise description. All these 

uncertainties make the analysis of real reliability field data prohibitively 

complicated. Precise description in terms of probability distributions requires many 

simplifying assumptions which usually cannot be verified. In (Hryniewicz, 2007) 

we have proposed an alternative method for modeling imprecise information by 

using fuzzy sets. The resulting model is fuzzy random as we merge information of 

random and fuzzy character. In the third section of this paper we present a method 

for the analysis of lifetime data when information about working conditions is 

imprecise and is described in terms of intervals. The results presented in that 

section can be easily generalized to the case of fuzzy-valued imprecise information. 

As an example, we consider the case of the proportional hazard model with 

interval-valued covariates. This model in the case of the Weibull distribution is 

equivalent to the log-location-scale model which is often used in the description of 

reliability data (e.g. from accelerated life tests). 

 

 

2. Mathematical model in case of precise information about working 

conditions 
 

Mathematical models of lifetimes have been developed since the early 1950s. For 

example, the general mathematical model of lifetime data was presented in (Hu and 

Lawless, 1996). Following their proposal we consider population P consisting of n 

units described by their lifetimes, n.,i,ti 1 , random censoring times, 

n.,i,i 1 , and q-dimensional vectors of covariates n.,i,i 1z , respectively. 

Triplets  iii ,,t z  are the realizations of a random sample from a distribution with 

the joint probability function 
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     qR,,t,,dG,;|tf  zzz 00  , (1) 

 
where lifetimes and censoring times are usually considered independent given 

fixed z, and  z,G   is an arbitrary cumulative distribution function. Let O be the 

set of m units for whom the lifetimes are observed, i.e. for whom n,,i,t ii 1 . 

The remaining n-m units belong to the set C of censored lifetimes for whom only 

their censoring times i  and covariates iz  are known. The function 

   zz ,;|tF,;|tS  1 , where  z,;|tF   is the cumulative distribution 

function of the lifetime, is called in the literature the survivor function or the 

survival function. The likelihood function that describes the lifetime data is now 

given in (Hu and Lawless, 1996) 

 

           



Ci

iiiii

Oi

iiiii ,dG,;|tS,dG,;|tfL zzθzzθθ   (2) 

 

Many other specific models which are comprehensively described in reliability 

textbooks may be considered as special cases of this general model. Below, we 

briefly present two families of lifetime data models which are the special cases of 

(2) and well suited for the description of lifetime tests in field conditions, namely 

proportional hazard models, and location-scale regression models.  

 

In case of the proportional hazard models, the hazard function, defined as 

     zθzθzθ ,;tS/,;tf,;th  , is linked to the test conditions by the following 

equation 

 

       zz gth|th 0  (3) 

 

where h0(.) is the baseline hazard function which may depend on some unknown 

parameters and g(.) links reliability with some external variables (covariates) that 

may describe working conditions. Parameters of these functions have to be 

estimated from statistical data. Another representation of the proportional hazard 

model is the following: 

 

      z
z

g
tS|tS 0 . (4) 

 

One of the special cases of (3) which is the most frequently used in practice was 

proposed in (Cox, 1972) and is given by the following general expression 
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     zβ
θzθ e,th,|th 0 , (5) 

 

where  is a vector of unknown parameters, qqzz   11zβ , and q,,  1  

are unknown regression coefficients. This model was investigated by many 

authors, and its most comprehensive description can be found in (Lawless, 2003). 

In case of the Weibull distribution of lifetimes the survivor function is given by the 

following expression 

 

    




  zβ

z teexp|tS , (6) 

 

where >0 is the shape parameter, responsible for the description of the type of 

failure processes. If we use the transformation TlogY  , the logarithms of 

lifetimes are described by a simple linear model 

 

 WY  zβ , (7) 

 

where  and the random variable W is distributed according to the standard 

extreme value distribution (The Gumbel distribution) with the probability density 

function    wexpwexp  . 

When n test units are observed, and independent observations   n,,i,,y ii 1z  

are available, where yi is either logarithm of lifetime or logarithm of censoring time 

of the i-th unit, the maximum likelihood estimators of the parameters describing 

the model can be found by solving the following set of equations (Lawless, 1982): 
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where   /yx iii βz . The solution of q+1 equations given by (8) and (9) 

yields the maximum likelihood estimators of  (and hence for the shape parameter 

), and regression coefficients q,,  1 . The formulae for the calculation of the 

asymptotic covariance matrix of these estimators can be found in (Lawless, 1982). 

A second regression model commonly used for the analysis of lifetimes is the 

location-scale model for the logarithm of lifetime T, also known as the log-

location-scale model. In this model the random variable TlogY   has a 

distribution with the location parameter  z , and a scale parameter  which does 
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not depend upon the covariates z. This model can be expressed as follows: 

 

     zY , (10) 

 

where 0  and   is a random variable with a distribution that is independent on 

z. Alternative representation of this model can be written as 

 

  
 











z
z



t
S|tS 0 . (11) 

 

Both families of models, i.e. proportional hazard models and log-location-scale 

models, have been applied for different probability distributions of lifetimes. The 

detailed description of those results can be found, for example, in (Lawless, 2003). 

However, it is worth to note, that only in the case of the Weibull distribution (and 

the exponential distribution, which is a special case of the Weibull distribution) 

both models coincide. In such a case the parameters of the model can be found 

from equations (8) – (9). Similar equations for a general case of any probability 

distribution can be found in (Lawless, 2003). 

When the type of the lifetime probability distribution is not known and the 

proportional hazards model seems to be appropriate we can apply distribution-free 

methods for the analysis of lifetimes. Let us consider a special case of (4) 

 

    zβz tS|tS 0 . (12) 

 

A method for the separation of the estimation of the vector of regression coefficient 

 from the estimation of the survivor function S0(t) has been proposed in (Cox, 

1972). Suppose that observed lifetimes are ordered as follows:    mtt 1 . Let 

  ii tRR   be the set of all units being at risk at time  it , that is the set of all non-

failed and uncensored units just prior to  it . Note, that in this model censoring 

times of the remaining n – m units may take arbitrary values. For the estimation of 

Cox   proposed to use a pseudo-likelihood function given by (Cox, 1972) 

 

       
 












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ii eeL
1

βzβz
β  (13) 

 

Slight modification of (13) has been proposed in (Lawless, 1982). This 

modification allows for few multiple failures at times   m,,i,t i 1 . Formulae for 

the calculation of the asymptotic covariance matrix of the estimators of q,,  1  
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are given in (Lawless, 1982). When the vector of the regression coefficients has 

been estimated, we can use a distribution-free methods, such as Kaplan-Meier, 

Breslow or generalized Nelson - Aalen estimators (for more information, see 

(Lawless, 2003)), for the estimation S0(t).  

 

 

3. Mathematical model of lifetime data in case of imprecise information 

about working conditions 
 

In the models presented in the previous section we assume that the values of 

covariates z are precisely known. Even in this simplest case the analysis of real 

field data is relatively difficult. In reality, however, the situation is much more 

complicated. Usually, working conditions are varying time in a random way, and 

their precise description becomes very difficult (see, e.g. models described in 

(Lawless, 2003)) or even mathematically intractable. Therefore, there is a need to 

propose approximate methods that should be simple enough in order to be applied 

in practice.  

 

In the simplest case the existing partial knowledge about the values of working 

conditions, described by the vector of covariates z, can be presented in terms of 

intervals representing the values of considered characteristics or quantities. In order 

to simplify further notation let us denote by z a compact interval [zmin,zmax].  

 

Let us consider the case when lifetime data can be described by the proportional 

hazard model. To be more precise, let us assume that this model has the form 

proposed by Cox, i.e. the hazard function in this case is given by (6). The log-

likelihood function in this case can be expressed as follows 

 

          
 


n

i

n

i

iiiii exp;tH;thlogl
1 1

00 zβθzβθβθ,  . (14) 

 

where i  is equal to 1 when we observe a failure at ti  or 0 when ti  is a censoring 

time. In case of precise information about the times to failures, censoring times, 

and values of covariates the estimates of the unknown parameters () can be 

found by maximization of (14). However, in case of imprecise information about 

covariates zi the results of maximization are not unequivocal anymore. The 

maximum likelihood estimators of () are in this case given as multivariate 

intervals obtained as the solutions of the following optimization problems: 

 

  
 
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  
 

 βθβθ
βθzz

,lmaxargsup,
,

maxmax

ii 

 ,    (16) 

 

where  βθ,l  is the log-likelihood function given by (14). The optimization 

problem defined by (17) – (18) may be, in a general case, difficult, as the interval 

computations of nonlinear functions are usually time consuming. However, if we 

use the partial likelihood function (13) the optimization procedure may be 

simplified. 

 

Consider the partial likelihood function given by (13) as a function of covariates. 

The partial derivatives with respect to k-th element of the vector of covariates z are 

expressed as follows: 

 

 
 

   
 

 

 

 

 

 

 

 















 



























 





 

i

l

i

i

l

i

l

Rl

Rl

k

n

i Rl

i

k,ik,i e

ee

eln
z

l

z

Lln
βz

βzβz

βz
βz

β


1

      (17) 

 

The sign of (17) is the same as the sign of k . Hence, for a covariate described by 

a positive regression coefficient the maximum value of (13) is attained for the 

maximal possible value of this covariate. In case of negative coefficients this 

maximum is attained for the minimal possible value of the covariate. The 

conditions for obtaining a minimum value of the likelihood function are just 

opposite. This result suggests a simple algorithm for finding the interval estimate 

of . We can start with any set of values   q,,k,n,,i,z k,i  11   such that 

      max,k,imin,k,ik,i z,zz  , and calculate initial estimators of q,,  1 . Then, 

depending of the signs of the elements of this vector we replace the values of   k,iz  

with their respective minimal or maximal values. For these new values of 

covariates we find upper limits for the interval estimates of q,,  1 . If the signs 

of the elements of this vector have not been changed the estimation procedure 

stops. Otherwise, we continue this iterative procedure. When the procedure does 

not converge after a few steps we have to use a general estimation procedure. The 

same is repeated, with appropriate changes of the procedure, for the lower limits.  

  
After having obtained the interval estimates of the regression coefficients 

q,,  1  we can estimate the remaining parameters of the model. For example, in 

case of the Weibull distribution we have to solve a nonlinear equation (9). Note, 

however, that the values xi in (9) are now interval-valued. Therefore, the solution of 
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(9) with respect to  has to bee interval-valued too. The exact solution is not 

simple, and requires extensive computations. However, reasonable approximations 

can be found if for the calculation of the lower limit of  we will use lower limits 

of xi that correspond to small values of times ti, and upper limits of xi that 

correspond to large values of times ti. In case of the calculation of the upper limit 

of  we should proceed in an opposite way. 

 

4. Conclusion 

 
 Statistical analysis of reliability field data is quite complicated, as it is necessary to 

take into account different test conditions. These conditions are usually not well 

defined or vary in time in an unknown way. The methodology proposed in this 

paper let to take into account those uncertainties in the description of test 

conditions that cannot be described by precise probabilistic models. 
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