Warianty tytułu
Języki publikacji
Abstrakty
In this paper, an improved expectation maximization (EM) algorithm called statistical histogram based expectation maximization (SHEM) algorithm is presented. The algorithm is put forward to overcome the drawback of standard EM algorithm, which is extremely computationally expensive for calculating the maximum likelihood (ML) parameters in the statistical segmentation. Combining the SHEM algorithm and the connected threshold region-growing algorithm that is used to provide a priori knowledge, a novel statistical approach for segmentation of brain magnetic resonance (MR) image data is thus proposed. The performance of our SHEM based method is compared with those of the EM based method and the commonly applied fuzzy C-means (FCM) segmentation. Experimental results show the proposed approach to be effective, robust and significantly faster than the conventional EM based method.
Czasopismo
Rocznik
Tom
Strony
125-136
Opis fizyczny
Bibliogr. 15 poz.,
Bibliografia
- [1] WELLS W.M., GRIMSON W.E.L., KIKINS R., JOLESZ F.A., Adaptive segmentation of MRI data, IEEE Transactions on Medical Imaging 15(4), 1996, pp. 429–42.
- [2] HELD K., KOPS E.R., KRAUSE B.J., WELLS W.M., KIKINIS R., MULLER-GARTNER H.W., Markov random field segmentation of brain MR images, IEEE Transactions on Medical Imaging 16(6), 1997, pp. 878–86.
- [3] ATKINS M.S., MACKIEWICH B.T., Fully automatic segmentation of the brain in MRI, IEEE Transactions on Medical Imaging 17(1), 1998, pp. 98–107.
- [4] CLARKE L.P., VELTHUIZEN R.P., CAMACHO M.A., HEINE J.J., VAIDYANATHAN M., HALL L.O., THATCHER R.W., SILBIGER M.L., MRI segmentation: methods and applications, Magnetic Resonance Imaging 13(3), 1995, pp. 343–68.
- [5] RAJAPAKSE J.C., GIEDD J.N., RAPOPORT J.L., Statistical approach to segmentation of single-channel cerebral MR images, IEEE Transactions on Medical Imaging 16(2), 1997, pp. 176–186.
- [6] HASHIMOTO A., KUDO H., Ordered-subsets EM algorithm for image segmentation with application to brain MRI, [In] Proceedings of the IEEE Nuclear Science Symposium Conference Record, Vol. 3, 2000, pp. 18/118–21.
- [7] LIANG Z., MACFALL J.R., HARRINGTON D.P., Parameter estimation and tissue segmentation from multispectral MR images, IEEE Transactions on Medical Imaging 13(3), 1994, pp. 441–9.
- [8] DEMPSTER A.P., LAIRD N.M., RUBIN D.B., Maximum-likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society 39, 1977, pp. 1–38.
- [9] LAFERTE J.M., HEITZ F., PEREZ P., A multiresolution EM algorithm for unsupervised image classification, [In] Proceedings of the 13th International Conference on Pattern Recognition, Vol. 2, 1996, pp. 849–53.
- [10] GERIG G., KÜBLER O., KIKINIS R., JOLESZ F.A., Nonlinear anisotropic filtering of MRI data, IEEE Transactions on Medical Imaging 11(2), 1992, pp. 221–32.
- [11] WHITAKER R.T., XUE X.W., Variable-conductance, level-set curvature for image denoising, [In] Proceedings of the International Conference on Image Processing, Vol. 3, 2001, pp. 142–5.
- [12] COLLINS D.L., ZIJDENBOS A.P., KOLLOKIAN V., SLED J.G., KABANI N.J., HOLMES C.J., EVANS A.C., Design and construction of a realistic digital brain phantom, IEEE Transactions on Medical Imaging 17(3), 1998, pp. 463–8.
- [13] BEZDEK J., Pattern Recognition with Fuzzy Objective Functions Algorithms, Plenum Press, New York 1981.
- [14] HALL L., BENSAID A.M., CLARKE L., VELTHUIZEN R.P., SILBIGER M.S., BEZDEK J.C., A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain, IEEE Transactions on Neural Networks 3(5), 1992, pp. 672–82.
- [15] http://www.bic.mni.mcgill.ca/brainweb/
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW4-0008-0013