Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | Vol. 24, No. 1 | 85--18
Tytuł artykułu

Structural, thermal and electrical properties of lithium-manganese spinel with a sulphur-substituted oxygen sublattice

Warianty tytułu
Konferencja
IX National Conference on Fast Ion Conductors , Wrocław-Borowice , 9-12 December 2004
Języki publikacji
EN
Abstrakty
EN
Sulphur substituted LiMn2O4-ySy spinels were obtained using the sol-gel method followed by calcination at 300 °C. The crystallinity of the samples was improved by further calcination at 800 °C. The monophase system was formed up to y = 0.20. At higher sulphur concentrations an additional phase (Mn2O3) appeared. The sulphided spinels were thermally stable in air up to about 900 °C. They decomposed above this temperature, with the oxidation of sulphur to SO2. The decomposition products, LiMnO2 and Mn3O4, reacted during slow cooling and formed stoichiometric LiMn2O4. Sulphur substitution retarded the phase transition at room temperature, although a new one appeared at higher temperatures (540-580 °C). Such an effect does not exist in sulphur-free spinels.
Wydawca

Rocznik
Strony
85--18
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
autor
autor
autor
Bibliografia
  • [1] TARASCON J.M., ARMAND M., Nature, 414 (2001), 359.
  • [2] WHITTINGHAM M.S., Solid State Ionics, 134 (2000), 169.
  • [3] AMATUCCI G.G., DU PASQUIER A., BLYR A., ZHENG T., TARASCON J.M., Electrochimica Acta, 5 (1999), 255.
  • [4] RODRIGUEZ-CARVAJAL J., ROUSSE G., MASQUELIER C., HERVIEU M., Phys. Rev. Lett., 81 (1998), 4660.
  • [5] YAMADA A., TANAKA M., Mat. Res. Bull., 30 (1995), 715.
  • [6] YAMADA A., TANAKA M., TANAKA K., SEKAI K., J. Power Sources, 81, 82 (1999), 73.
  • [7] WU Y.P., RAHM E., HOLZE R., Electrochim. Acta, 47 (2002), 3491.
  • [8] MOLENDA J., MARZEC J., SWIERCZEK K., OJCZYK W., ZIEMNICKI M., WILK P., MOLENDA M., DROZDEK M., DZIEMBAJ R., Solid State Ionics, 171 (2004), 215.
  • [9] CAPSONI D., BINI M., CHIODELL G., MASSAROTTI V., MUSTARELL P., LINATI L., MOZZATI M.C., AZZONI C.B., Sol. State Comm., 126 (2003), 169.
  • [10] DZIEMBAJ R., MOLENDA M., J. Power Sources, 119–121C (2003), 121.
  • [11] SWIERCZEK K., MARZEC J., MARZEC M., MOLENDA J., Solid State Ionics, 157 (2003), 89.
  • [12] MOLENDA M., DZIEMBAJ R., PODSTAWKA E., PRONIEWICZ L.M., J. Phys. Chem. Solids, 66 (2005), 1761.
  • [13] PISZORA P., J. Alloys and Compounds, 382 (2004), 112.
  • [14] SUN Y.K., JEON Y.S., Electrochem. Commun., 1 (1999), 597.
  • [15] PARK S.H., PARK K.S., SUN Y.K., NAHM K.S., J. Electrochem. Soc., 147 (2000), 2116.
  • [16] SUN Y.K., LEE Y.-S., YOSHIO M., Mat. Lett., 56 (2002), 418.
  • [17] DZIEMBAJ R., MOLENDA M., MAJDA D., WALAS S., Solid State Ionics, 157 (2003), 81.
  • [18] YOUNG R.A., DBWS-9411, Release 30.3.95, School of Physics, Georgia Institute of Technology, USA 1995.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW1-0021-0085
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.