Warianty tytułu
Konferencja
IX National Conference on Fast Ion Conductors , Wrocław-Borowice , 9-12 December 2004
Języki publikacji
Abstrakty
The principal materials used in the construction of solid oxide fuel cells (SOFCs) are discussed. Some of the problems encountered with high temperature fuel cells (HT-SOFCs) might be overcome by lowering the operating temperature to 500-700 °C, through the development of suitable materials for intermediate temperature fuel cells IT-SOFCs. Candidate electrolyte materials are discussed, including cerium gallium oxide, lanthanum strontium gallium magnesium oxide, and electrolytes based on doped bismuth oxide. While high ionic conductivities can readily be achieved in these materials at intermediate temperatures, stability in reducing atmosphere is still a problem. This might be overcome by careful chemical design of electrolytes containing stabilising dopants. Two zirconia-doped bismuthate systems are discussed in this respect. In both cases, the obtained materials exhibit different structures - one is Bi3Nb1-xZrxO7-x/2 of the ?-Bi2O3 type, and the other, Bi4V2-2xZrxO11-x, has a layered structure of the Aurivillius type.
Czasopismo
Rocznik
Tom
Strony
13--22
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
autor
autor
autor
autor
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662, Warsaw, fkrok@mech.pw.edu.pl
Bibliografia
- [1] Handbook of Fuel Cells, W. Vielstich, A. Lamm, H.A. Gastiger (Eds.), Fundamentals, Technology and Applications, Wiley, New York, 2003.
- [2] STEELE B.C., HEINZEL A., Nature, 414 (2001), 345.
- [3] MINH N.Q., J. Am. Ceram. Soc., 76 (1993), 563.
- [4] PORTER D.L., HEUER A.H., J. Am. Ceram. Soc., 62 (1979), 298.
- [5] DOES D.W., CLAAR T.D., EASLER T.E., FREE D.C., MRAZEK F.C., J. Electrochem. Soc., 134 (1987), 2141.
- [6] KUO J.H., ANDERSON H.U., SPARLIN D.E., J. Solid State Chem., 83 (1989), 52.
- [7] BATAWI E., PLAS A., STRAUB W., HONNEGGER K., DIETHELEM R., Solid Oxide Fuel Cells (SOFC6) Singhal S.C. and Dokija M. (Eds.) The Electrochemical Society Proceedings, Pennigton, NJ, PV99-19, 767 (1999).
- [8] GODICKEMEIER M., SASAKI K., GAUKLER L.J., J. Electrochem. Soc., 144 (1997), 1635.
- [9] FENG M., GOODENOUGH J.B., J. Solid State Inorg. Chem., 31 (1994), 663.
- [10] See for example a) SAMMES N.M., TOMPSETT G.A., NAFE H., ALDINGER F., J. Eur. Ceram. Soc., 19 (1999), 1801, b) SHUK P., WIEMHOFER H.-D., GUTH U., GOPEL W., GREENBLATT M., Solid State Ionics, 89 (1996), 179, c) MAIRESSE G., [in:] Fast Ion Transport in Solids, B. Scrosati, A. Magistris, C.M. Mari, G. Marioto (Eds.), Kluver Academic Publ., Dordecht, 1993, p.271, d) BOVIN J.C., MAIRESSE G., Chem. Mater., 10 (1998), 2870.
- [11] KUDO T., OBAYASHI Y., J. Electrochem. Soc., 123 (1976), 415.
- [12] DOSHI R., RICHARDS V.L., CARTER J.D., WANG X., KRUMPELT M., J. Electrochem. Soc., 146 (1999), 1273.
- [13] TAKAHASHI T., IWAHARA H., NAGAJ Y., J. Appl. Electrochem., 2 (1972), 97.
- [14] HIBINO T., IWAHARA H., Chem. Lett., 69 (1993), 1131.
- [15] FUNG K.Z, BAEK H.D., VIRKAR, A.V. Solid State Ionics, 52 (1992), 199.
- [16] CASTRO A., AGUADO E., ROJO J.M., HERRERO P., GALY J., Mater. Res. Bull., 33 (1988), 31.
- [17] KROK F., ABRAHAMS I., WROBEL W., CHAN S.C.M., KOZANECKA A., OSSOWSKI T., Solid State Ionics, 175 (2004), 335.
- [18] KOZANECKA-SZMIGIEL A., ABRAHAMS I., KROK F., WROBEL W., to be published.
- [19] ABRAHAM F., DEBREVILLE-GRESSE M.F., MAIRESSE G., NOVOGROCKI G., Solid State Ionics, 28–30 (1988), 529.
- [20] ABRAHAMS I., KROK F., J. Mat. Chem., 12 (2002), 3351.
- [21] KROK F., ABRAHAMS I., MALYS M., WROBEL W., KOZANECKA A., Mol. Phys. Rep., 35 (2002), 94.
- [22] KROK F., ABRAHAMS I., WROBEL W., CHAN S.C.M., MALYS M., BOGUSZ W., DYGAS J.R., Solid State Ionics, 154 (2002), 511.
- [23] WROBEL W., ABRAHAMS I., KROK F., KOZANECKA A., MALYS M., BOGUSZ W., DYGAS J.R., Solid State Ionics, 175 (2004), 425.
- [24] WROBEL W., ABRAHAMS I., KROK F., KOZANECKA-SZMIGIEL A., to be published
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW1-0021-0076