Czasopismo
2012
|
R. 88, nr 11a
|
358-362
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Hybrydowa metoda klasyfikacji obrazów z kolorowa teksturą
Języki publikacji
Abstrakty
Color texture classification is an important step in image segmentation and recognition. The color information is especially important In textures of natural scenes. In this paper, we propose a novel approach based on the 2D and semi 3D texture feature coding method (TFCM) for color texture classification. While 2D TFCM features are extracted on gray scale converted color texture images, the semi 3D TFCM features are extracted on RGB coded color texture images. The proposed approach is tested on two publicly available datasets. Moreover, comprehensive comparisons are realized with traditional texture analysis tools. The results show the advantages of the proposed method over other color texture analysis methods.
W artykule zaproponowano nowa metodę klasyfikacji obrazów z kolorowa teksturą wykorzystującą wykorzystującą metody kodowania tekstury 2D. Metodę testowano na dwóch przykładach baz danych i porównano z metodami dotychczas stosowanymi.
Czasopismo
Rocznik
Tom
Strony
358-362
Opis fizyczny
Bibliogr. 38 poz., tab., rys.
Twórcy
autor
- Firat University, Technology Faculty, Department of Software Engineering, etanyildizi@firat.edu.tr
Bibliografia
- [1] M. Tuceryan, A.K. Jain, Texture analysis, Handbook of Pattern Recognition and Computer Vision (1993) 235–276.
- [2] R. M. Haralick, Statistical and structural approaches to texture, Proceedings of IEEE 67(5) (1979) 786–804.
- [3] J.Zhang, T.Tan, Brief review of invariant texture analysis methods, Pattern Recognition 35 (3) (2002) 735–747.
- [4] M. Petrou, P. Garcı´a-Sevilla, Image Processing Dealing with Texture, Wiley, 2006.
- [5] M. Mirmehdi, X. H. Xie, J. Suri, Handbook of Texture Analysis, World Scientific, 2008.
- [6] Y.Q. Chen, M.S. Nixon, D.W. Thomas, Statistical geometrical features for texture classification, Pattern Recognition 28 (4) (1995) 537–552.
- [7] F.M. Vilnrotter, R. Nevatia, K.E. Price, Structural analysis of natural textures, IEEE Transactions on Pattern Analysis and Machine Intelligence 8 (1) (1986) 76–89.
- [8] R. Azencott, J.-P. Wang, L. Younes, Texture classification using windowed Fourier filters, IEEE Transactions on Pattern Analysis and Machine Intelligence 19 (2) (1997) 148–153.
- [9] B.Julesz, Experiments in the visual perception of texture, Scientific American 232 (4) (1975)34–43.
- [10] J.M. Keller, S. Chen, R.M. Crownover, Texture description and segmentation through fractal geometry, Computer Vision, Graphics, and Image Processing 45 (2) (1989) 150–166.
- [11] A.Şengür, İ.Türkoğlu ve M.C.İnce, Wavelet Packet Neural Networks For Texture Classification, Expert systems with applications, 32(2), 2007
- [12] Sengur, A., “Wavelet transform and adaptive neuro-fuzzy inference system for color texture classification”, Expert Systems with Applications, 34(3), 2120-2128, (2008).
- [13] Murat Karabatak, M. Cevdet Ince, Abdulkadir Sengur, Wavelet domain association rules for efficient texture classification, Applied Soft Computing, Vol 11 (1), pp. 32-38, 2011.
- [14] J. Daugman, C. Downing, Gabor wavelets for statistical pattern recognition, in: M.A. Arbib (Ed.), The Handbook of Brain Theory and Neural Networks, MIT Press, Cambridge, MA, 1995, pp. 414–419.
- [15] J.G. Daugman, Uncertainty relation for resolution in space, spatial frequency and orientation optimized by two-dimensional visual cortical filters, Journal of the Optical Society of America 2 (7) (1985) 1160–1169.
- [16] J.E.W. Mayhew, J.P. Frisby, Texture discrimination and fourier analysis in human vision, Nature 275 (1978) 438–439.
- [17] M. H. Horng, 2003. “Texture feature coding method for texture classification,”Opt. Eng., vol. 42, no. 1, pp. 228–238.
- [18] J. Liang, X. Zhao, R. Xu, C. Kwan, and C.-I. Chang, 2004. “Target detection with texture feature coding method and support vector machines,” in Proc. ICASSP, Montreal, QC, Canada, pp. II-713–II-716.
- [19] P. Torrione and L. M. Collins, 2007. “Texture features for antitank landmine detection using ground penetrating radar,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 7, pp. 2374– 2382.
- [20] D.G. Lowe, Distinctive image features from scale-invariant keypoints, Inter- national Journal of Computer Vision 2 (60) (2004) 91–110.
- [21] J. Zhang, M. Marszalek, S. Lazebnik, C. Schmid, Local features and kernels for classification of texture and object categories: a comprehensive study, International Journal of Computer Vision 73 (2007) 213–238.
- [22] [22] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in: Proceedings of the IEEE International Conference on Computer Vision, vol. 1, 2005, pp. 886–893.
- [23] R. Chellappa, S. Chatterjeey, Classification of textures using Gaussian Markov random fields, in: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 33, 1985, pp. 959–963.
- [24] R.L. Kashyap, A. Khotanzad, A model-based method for rotation invariant texture classification, IEEE Transactions on Pattern Analysis and Machine Intelligence 8 (7) (1986) 472–481.
- [25] H. Deng, D.A. Clausi, Gaussian MRF rotation-invariant features for image classification, IEEE Transactions on Pattern Analysis and Machine Intelligence 26 (7) (2004) 951–955.
- [26] S.G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelli- gence 11 (1989) 674–693.
- [27] M. Varma, A. Zisserman, A statistical approach to texture classification from single images, International Journal of Computer Vision 62 (2005) 61–81.
- [28] T. Ojala, M. Pietik¨ainen, D. Harwood, A comparative study of texture measures with classification based on feature distributions, Pattern Recogni- tion 29 (1) (1996) 51–59.
- [29] T. Ojala, M. Pietik¨ainen, T. M¨aenp¨a¨ a, Multiresolution grayscale and rotation invariant texture classification with local binary patterns, IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (7) (2002) 971–987.
- [30] M. Heikkil , M. Pietik¨ainen, C. Schmid, Description of interest regions with local binary patterns, Pattern Recognition 42 (3) (2009) 425–436.
- [31] A. R. Backes , D. Casanova , O. M. Bruno, Color texture analysis based on fractal descriptors, Pattern Recognition 45 (2012) 1984–1992.
- [32] L. Liu, P. Fieguth, D. Clausi, G. Kuang, Sorted random projections for robust rotation-invariant texture classification, Pattern Recognition 45 (2012) 2405–2418
- [33] G.-B. Huang, Q.-Y. Zhu and C.-K. Siew, “Extreme Learning Machine: Theory and Applications”, Neurocomputing, vol. 70, pp. 489-501, 2006.
- [34] Internet: University of Oulu texture database (2005). http://www.outex.oulu.fi/outex.php.
- [35] D. Deiana, A Texture Analysis of 3D GPR Images, Master thesis, Delft University of Technology, 2008.
- [36] Van de Wouwer, G., Scheunders, P., Livens, S., & Van Dyck, D., Wavelet correlation signatures for color texture characterization. Pattern Recognition, 32(3), (1999) 443–451.
- [37] G. Paschos, M. Petrou, Histogram ratio features for color texture classifica- tion, Pattern Recognition Letters 24 (1–3) (2003) 309–314.
- [38] I.-U.-H. Qazi, O. Alata, J.-C. Burie, C. Fernandez-Maloigne, Color spectral analysis for spatial structure characterization of textures in IHLS color space, Pattern Recognition 43 (3) (2010) 663–675.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS4-0004-0119