Warianty tytułu
Komputerowy system wielospektralnej analizy danych obrazowych raka skóry
Języki publikacji
Abstrakty
Multi-band imaging computer-based system, self-designed and self-constructed, based on a liquid-crystal filter with spectral transmittance driven in 400 nm - 740 nm wavelengths range is presented. Performed tests of images dimensionality reduction, which base on different types of principal component analysis, indicated onto flexibility and usefulness of the described approach for skin cancer diagnosis.
W artykule opisano samodzielnie zaprojektowany i wykonany, wspomagany komputerowo, oparty na transmisyjnym filtrze ciekłokrystalicznym pracującym w zakresie długości fal od 400 nm do 740 nm, układ do obrazowania wielospektralnego. Przeprowadzone testy redukcji wymiarowości obrazu, w oparciu o różne rodzaje analizy jego składowych głównych, wskazały na użyteczność zastosowanego podejścia w diagnostyce raka skóry. (Komputerowy system wielospektralnej analizy danych obrazowych raka skóry).
Czasopismo
Rocznik
Tom
Strony
107-110
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
autor
autor
autor
- Polish-Japanese Institute of Information Technology, adam.switonski@polsl.pl;
Bibliografia
- [1] Pavlova I., Hume K. R., Yazinski S. A., Flanders J., Southard T. L., Weiss R. S., Webb W. W., Multiphoton microscopy and microspectroscopy for diagnostics of inflammatory and neoplastic lung, J. Biomed. Opt., 17 (2012), 036014
- [2] Sabatini R., Richardson M. A., Cantiello M., Toscano M., Fiorini P., Jia H., Zammit-Mangion D., Night vision imaging systemsbdesign, integration, and verification in military fighter aircraft, Proc. SPIE, 8439 (2012), 84390R
- [3] Chen Y., Ji Y., Zhou J., Chen X., Wei X., Shen W., Wavelength calibration and spectral line bending determination of an imaging spectrometer, Proc. SPIE, 7384 (2009), 73841G
- [4] Haas W., Polyanskaya M., Bayer F., Gödel K., Hofmann H., Rieger J., Ritter A., Weber T., Wucherer L., Durst J., Michel T., Anton G., Hornegger J., Image fusion in x-ray differentia phase-contrast imaging, Proc. SPIE, 8314 (2012), 83143U
- [5] Gawron W., Bielecki Z., Wojtas J., Stanaszek D., Lach J., Fimiarz M., Infrared detection module for optoelectronic sensors, Proc. SPIE, 8353 (2012), 83532U
- [6] Brauers J., Schulte N., Aach T., Multispectral Filter-Wheel Cameras: Geometric Distortion Model and Compensation Algorithms, IEEE Trans. Imag. Process., 17 (2088), nr.1, 2368-2380
- [7] Kelly S. M., O’Neill M., in Handbook of Advanced Electronic and Photonic Materials and Devices, edited by Nalwa H. S., Volume 7: Liquid Crystals, Display and Laser Materials (Academic Press, 2000)
- [8] Yang Y., Sha X., Zhang Z., Analysis of the deviation of the diffracted beams caused by acousto-optic tunable filter in multispectral imaging, Chin. Opt. Lett., 9 (2011), nr.8, 081101-081101
- [9] Hege E. K., O'Connell D., Johnson W., Basty S., Dereniak E. L, Hyperspectral imaging for astronomy and space surviellance, Proc. SPIE, 5159 (2004), 380
- [10] Tanaka S., Sano Y., Aim to unify the narrow band imaging (NBI) magnifying classification for colorectal tumors: current status in Japan from a summary of the consensus symposium in the 79th Annual Meeting of the Japan Gastroenterological Endoscopy Society, Digestive Endoscopy, 23(Suppl. 1) (2011), 131-139
- [11] ASGE Technology Committee, Narrow band imaging and multiband imaging, Gastrointestinal Endoscopy, 67 (2008), nr.4, 581-589
- [12] Aleev R. M., Fofanov V. B, Using segmentation to automate the interpretation of multispectral images, J. Opt. Technol., 76 (2009), nr.12, 802-807
- [13] Guan T., Li L.-L., Zhang Y.-J., Competitive learning based on kernel functions and quadtree for image segmentation, Proc. SPIE, 8285 (2011), 82850Y
- [14] Van De Ville D., Nachtegael M., Van der Weken D., Kerre E. E., Philips W., Lemahieu I., Noise Reduction by Fuzzy Image Filtering, IEEE Trans. Fuz. Sys., 11 (2033), nr.4, 429-436
- [15] Shao X., Gao K., Lv L., Ni G., Unsupervised regions of interest extraction for color image compression, Chin. Opt. Lett., 10 (2012), nr.01, 011001
- [16] Lu Y., Inamura M., Filtered Multiple Observation Image Superposition, Geoscience and Remote Sensing Symposium IGARSS '01, IEEE 2001 International 3, (2001), 1487-1489
- [17] Wenming G., Multi-layer Digital Images Superposition of Highpower Micrograph, 2011 International Conference on Multimedia Technology (ICMT), (2011), 425-428
- [18] Witten I., Frank E., Data Mining: Practical Machine Learning. Tools and Techniques (Morgan Kaufmann Publishers, San Francisco, 2005)
- [19] Chuang Y.-K., Chen S., Delwiche S. R., Lo Y. M., Tsai Ch.-Y., Yang I-Ch., Hu Y.-P., Integration of independent component analysis with near infrared spectroscopy for evaluation of rice freshness, Proc. SPIE, 8369, (2012) 83690X
- [20] Yang J., Frangi A. F., Yang J., Zhang D., Jin Z., KPCA plus LDA: A complete kernel fisher discriminant framework for feature extraction and recognition, IEEE Transactions on PAMI, 27 (2005), nr.2, 230-244
- [21] Schölkopf B., Smola A., Learning with Kernels. Support Vector Machines, Regularization, Optimization, and Beyond (Massachusetts Institute of Technology, 2002)
- [22] Świtoński A., Błachowicz T., Zieliński M., Josiński H., Dimensionality reduction of multispectral images representing anatomical structures of an eye, in Proceeding of the International MultiConference of Engineers and Computer Scientists 2012, Editors: Ao S. I., Castillo O., Douglas C., Feng D. D., Lee J.-A, Vol. I (2012), 740-745, Newswood Limited, Hong-Kong, 2012.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS3-0026-0074