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ABSTRACT

An approximate extension of the slender body thewag used to determine the static shape of a
conically ended dielectric fluid drop in an electfield. Using induced surface charge density,
hydrostatic pressure and the surface tension dfgbel with interfacial tension stresses and Makwe
electric stresses, a governing equation was olitafoe slender geometries for the equilibrium
configuration and numerically solved for 3D. For a@pplied electric field, the electric energy on a
spherical drop can be maximized in a weak dieledisi increasing the applied electric field. The
minimum dielectric constant ratio needed to prodaceonical end is 14.5 corresponding to a cone
angle 31.25 .There is a sharp increment of the aspect rater ataching the threshold value of the
applied field strength and the deformation of thedfdrop increases with the increase in dielectric
constant of the fluid drop. For a particular dig¢dec constant ratio, the threshold electric field
producing conical interface increases with theeased surface tension of the liquid. The threshold
electric field for a water drop is 1.0854%1nits and the corresponding aspect ratio is 15.tf®
minimum dielectric ratio the cone angle of the ddggreases with applied field making the drop more
stable at higher fields.
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1. INTRODUCTION

The isolated neutral droplet has providesimple idealized system to investigate fluid
motion in an electric field. For drops held ateard of a capillary, the occurrence of conical
tips at an interface exposed to an electric fielas vdiscovered by ZelnkyBy adapting
Rayleigh’s stability criterion for a charged sphared assuming for droplets of equal inside
and outside pressure, that the drop lengthenedxippately into a form of prolate spheroid,
he showed that the disintegration occur due to dighymamical instability. Many of early
practical approaches were implemented on coni¢atfaces of soap bubbles held at the end
of capillary tubes. Wilson and Taylor examined, thecharged soap films subjected to a
uniform electric field and nearly conical equilibrium shapes of watempdrat an end of a
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spherically formed conical electrodeSimilar investigations concerning nearly conitipk
and on the sprays of tiny droplets that accompheycbnical end have been made due to their
use in electro-atomization. A method based on tevisial providing a basis for a systematic
investigation of both equilibrium and stability the same framework was developed by
Chandrasekhér An appropriate extension of the virial method eleped by Chandrasekhar
was used by Rosenkiltldo systematically re-examine the equilibrium oédmpressible
dielectric fluid drops placed in a uniform electfield.

In the absence of fluid motion, the shapthe interface is implemented by the balance
between interfacial tension stresses and Maxwedtet stresses in the interior of the droplet.
In the present work for studying the equilibriummigurations of a real liquid, in addition to
the above stresses, the hydrostatic pressure andsutface tension of the liquid were
considered. We have assumed that the drop is statler the electric field and that the
gravitational forces are negligible compared todteetric field and small excess pressures. In
the absence of an electric field, the dielectriopdwas assumed to be a sphere of interfacial
tension. The shape of the drop and the electiid Wiere coupled through the normal stress of
the interface which balances electric stress, fanelssure and the interfacial tension of the
drop. Simplifying the normal stress balance fondkr geometries an integral equation for the
electric field was approximated using the slendgrokhesis to obtain an ordinary differential
equation that couples the electric field to thepghaf the drop. Due to the nonlinearity of the
equation, the small aspect ratios were neglectddeaposing the drop to large electric fields,
the electric field inside the dielectric drop wasdcalated and tested for large aspect ratios.
The change in aspect ratios with the applied ete@igld and the dielectric constant of the
drop was tested. The electric field which atomit®s drop was calculated by considering
normal electric stress balance and the surfaceoters the drop and was examined for
different dielectric constants. The variation o€ tpolarized surface charge density and the
induced electric energy on the drop with the digleconstants were computed. The conical
ended shapes of drops with higher applied fieldewaso determined.

2. THEINDUCED CHARGE DENSITY ON THE CONICAL TIP
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Fig. 1. Schematic illustration of the deformation of aldctric fluid drop exposed to a uniform
electric field.
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The shape of the liquid drop can besatered initially spherical. When a dielectric
liquid droplet is exposed to an electric field fiedongates into prolate shape and then, if the
field strength is sufficiently high to a pointedaanical ends (Figure 1).

For the prolate spheroidal configurations, the domts for the onset of instability can be
obtained from elementary considerations. Neverfiselat is useful to establish these
conditions by a systematic approach which can heneled to more complicated situations
involving internal currents of the drop. When aeyital dielectric liquid drop is exposed to
an electric field, a surface charge due to therjmaon of the material is induced and due to
this excess electric stress at the interface betwbe liquid drop and the surrounding
medium, the drop starts to elongate (Figure 1)hénabsence of fluid motion, the shape of the
interface is implemented by the balance betweenfatial tension stresses, Maxwell electric
stresses in the interior of the droplet as weklydrostatic pressure and the surface tension of
the liquid.

Solving the Laplace’s equation for a spherical dvbdielectric constant, radiusro placed in

a medium of dielectric constagtand a uniform electric field of magnitudg directed along
the z-axis (Figure 1) with no free charges inside and outside sphere, for the boundary
conditions ar = ro, we obtain the potential insidg and outsideg,: the liquid drop as

@, =- E,rcosd (r>r,)

E/E+2 (1)
g/E-1\r°
E -E.r co¥ Er<sr
wout £/§+2 r2 OCOSH 0 ( 0) (2)

Using Maxwell’s equations, the electromagnetic éoper unit volume acting on the dielectric
liquid drop in Sl units S

f = g(0.E)E+ iDDB—e‘O%—f OB (3)

Hy

¢ IS the permittivity of free space. The electricest tensor in a medium with dielectric
constant is given by

T" = g¢| EE —%dE2 (4)

1

Normal stress of the outer surfaey and inner surfac&, of the drop are given in terms of
tangential ;) and normal &,) components of electric field%s
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(1) = Leg(E2-6), (1), = lee(i-E).  ©

n

The jump in the normal electric stress across mberface separating two distinct dielectric
liquids is

(aTE) = %50(5—5){Et2+(§jEn2] (6)

&

¢/ IS assumed to be a fixed parameter. The raditiseoflropa(z) in cylindrical coordinates

(r,0, 2) aligned with the applied electric fiel , is assumed to be uniform at large distances
from the interface. At the surface.(,) , the small radial field; is®

- Lol
E = Za(z)az(EZ) (7)

For slender shapés.a,/l <<1), assuming thafa,/)’(¢/)<<1, the electric stress can be
approximated by

(aTF) = %50 (F-£)E%.  (8)

This approximation neglects the effect of the ndromemponents. Assuming that the drop is
static, the shape of the drop and the electrid fein be coupled through the normal-stress
equation at the interface by balancing the elediess differencand the fluid pressure to
interfacial tension. The normal stress balancebeaapproximated By

1 _
Z&,(E-€)E*+AP = - (9) .
2 a(z)
WhereAP is the constant pressure excess inside the drop and P

is the coefficient of the interfacial tension.

In order to find the behavior near a conical swefdbe solution
of the Laplace’s equation can be written in themfoof 0
Legendre functionP,(cosf). If the limited angular region
0<8<pB, 0<g¢< 2 is bounded by a conical dielectric surface

for ¢ = p as shown in figure 2, the region can be consttlas Fig. 2. Dielectric liquid dop

a deep conical hole bored in a dielectric surf&ee. 3> 772, _bOUflded by a conic
intarfaro
the region of space is which surrounds a pointediced
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dielectric surface. With the assumption of azimsymmetry, finite and single-valued
solutions in the range afosp < cow < : are sought. Since the dielectric surfaces is at a
fixed potential which can be taken as zero, thatswl in co® must vanish ap - g to satisfy
the boundary conditions. For regularityxat 1, it is convenient to make a series expansion
aroundx = 1 instead ok = 0. Since the potential must vanish at= g for all r, the complete
solution for the azimuthally symmetric potentiatsregions of the conical surface s < 5

and <0< aré

(r,0)=Y Ar"P,(c09) 0sgsp  (0)

®(r,0)= Y Br*P, (cosr-0)) f<O<m (1]
k=0
Standard boundary conditions for a fluid of dieliectonstant lead td

R.(cosé, R, 't codl, ¥ ~F, ¢ cof, B, ‘e ¥ 0 ( }

For givene and 6, equation (12) has a singular field solution foe range ofv between
o<v<1. There is a critical value for dielectric constagt= 17.59 below which -.,, for all
possible angles between ¢ < » /2, i.€. there is solution with -1,.. For dielectric constants
higher than critical value there are two anglesesponding to, -1,.. At the critical value,
the minimum reaches,.at & = 30°. The component of the electric field and the charg
densitys on the conical dielectric drop are

r

E =

r

_9®
r

1 A )
or)=—E, |,_.=—r""*sinBP '(co
(r) 47_[9|9_ﬁ . BP, '(cosB )

A drop with conical ends can be constructed by matca spheroid with two cones angle
For a drop with a conical tip, the electric fieldish diverge ag/+r . Therefore the electric
field near the conical tips can be found wheni /2.

-1 -1

e :_%Ar P, (cost), E, z—%Ar > singP, (co® ) (1P

r
2 2
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o(r) =§Tr_; sinSP, '(cosB ) (14

The induced charge density of the dielectric liqgdidp can be obtained from potential given
in equation 1 and 2 by using the boundary condition

E

=€ L Eou,[:er 2 M
EJE+2

+1 coY
and EJE+2 5,

] E, cosd

where & is unit vector towards the direction 0fThe polarization surface charge densiy

400Vm™*

surface charge density  Cny?
J

20Vnt

1 | 1 | 1
1] 20 40 51| a0 100 120
dielectric constant

Fig. 3. Variation in the surface charge density at thedbthe drop verses
applied electric field. The points correspond telefitric constant of water
(88.7).
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The surface charge densities

477 calculated for a dielectric fluid
Eout - Ein = —O'po| drop for different dielectric
60 constant and applied electric

fields of 20, 200, 400, and

600vm*are shown in figure 3.
— There are two main regions in the

3‘E‘O 5/5 -1 cosd (13 graph, a linear region and a
EO saturate region. For an applied
electric field, there is a limiting

charge density for every dielectric

constant corresponding to the finite maximum ofcharge separation of the liquid drop.

Upol

4\ g/E+2

3. ENERGY AND ASPECT RATIO

In the absence of an electric fieldg #hape of the liquid drop is spherical due to
minimization of surface energy caused by imbalasfcadhesive forces and cohesive forces.
In the presence of a uniform electric field duertduced electric charges inside the liquid
drop, an excess electric energy is accumulatedinbény the shape of the drop. The electric
energy stored in a spheroidal shape liquid dropbeaobtained by evaluating the integral

-1 _36 o &E-1 |, _ 36, €£E&-1 1%
£ = Z[onpda ==2E, ((g/ﬂz)z}o 2, ((£/§+2)2J( 4”] (16)

st .
=
=
[=h]
T
06t .
0.4f .
02H .
00V
,1203@?'_ .
i L '

0 10 20 30 40 =0 B0 70 a0 =] 100
dielectric constant

Fig. 4. Surface electrical energy on the drop verses diidemonstanfor applied
electric fields of 20, 200, 400, and 60G".
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whereV = 47ma’l /3 is the volume of the drop,andl are constant for spheroids. Figure 4 is

a plot of the energy stored in a spheroidal dielediquid drop of unit volume as a function
of dielectric constant for applied electric field§ 20, 200, 400, and 68@n*. The figure
indicates that the electric energy on a sphericgb dan be maximized in a weak dielectric by
increasing the applied electric field.

A slender dielectric drop when exposed to an atefigld appears from the outside as a line
distribution of charges. Using Gauss’s law, totaluced charg€ and thereby the potential
generated at a point,f) external to the drop due to line charge can bmiokd. At the

surface of the spheroid,=1 and r = a,. The potential ford, <<< |

£ dpd
ga(r,z)—@dz(aE)lnao. (17

At this point a new parameter termed, aspect galiQ ., is defined. The induced axial
electric field is

2

E =59 a@rE) (19
28 |a,|dz

The resultant field inside the drop

4| d?
E(z)=E,-E, = EO—%IngE(a(Z)ZE) (19)

With the assumption that electric field inside thiep is still a uniform electric field is
EO

e . |4l d?
1+ 1In a(z)?
28 aodzz(())

E(2) = (20)

Stationary liquid drop acting under the influenck acapillary forces assumes an exact
spherical shape and can be expected to be nedrgragal in a small electric field. The
stable configurations can be assumed to have igticl boundary of the form
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a(z)’ s z°

ao2 |2

(21)

For convenience, initially these boundaries havenbehosen to be two dimensional
coordinate spaces. This assumption has the adwawofagreatly simplifying the boundary
value problem associated with electric field. Tlenme equation (20) simplifies to

E(z) = E°2 (22)
1+§ 1 In‘4R\
£(R
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The normal stress balance equation (9) can be edupith equation (22) for a stable static
drop volumeV =4ma’l /3 of a spheroid. With the symmetry requirementsH) anda(z)
coupled equation read

1
- 2
y(@jmp 1+g(%} infar|| =&, - 2)E,

The  above
equation was solved
numerically.
Regardless of the
orientation of the
spheroid, aspect ratiq
R can be changed by
changing the applied
electric field. Figure 5
shows aspect ratio fof
a unit volume of a
liquid drop as a
function of applied
electric field strength
for various dielectric
constants. Aspect
ratio is significantly
affected by interfaciall rig 6 Model shapes of a dielectric fluid drop exposeelegtric field

tension and the excess Each step of the drop shape was plotted while asing the field
pressure of the drop| strength.

Therefore the analysis
was done for selected
values of interfacial tension, namely interfaciakfficient between water and air and excess
pressure of one unit. Small aspect ratios of tlop dvas neglected in the calculation by the
assumptiom, <<<I|.Figure 5 shows that the shape of the drop gethdurelongated with

increased electric field strengths. When the diateconstant of the drop is decreased, the
field strength which is necessary to obtain theesaspect ratio has to be increased. There is a
sharp increment of the aspect ratio after the ttwlesvalue of the applied field strength. The
deformation of the fluid drop increases with ther@ase in dielectric constant of the fluid
drop. For high applied electric fields, the drogl stndures its configuration properties,
interfacial tension and electric bond number.

The shapes of the drop modeled for i wolume by taking the interfacial tension
between the water and air for small excess pressime several aspect ratios by using
numerical values of electric field is shown in fige. This model was applied for large aspect

ratios of the drop to avoid the domination (if R) term in equation (23) leading to nonlinear
equations.

=4
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The range of aspect ratio of thepdveas taken betweeib<R< 30 We have

shown that a drop with conical tips must have attdc field that diverges as+-with
amplitude determined by the force balance equat®n This amplitude depends on the
applied field and the shape of the drop. In orddird external fields that give rise to conical

tips, a liquid drop with cone angRe, was consideredAS Z — |, 8, — O, static equilibrium
require that the local electric field diverges @62) ™. Asz - |, a(z)=( - z)tana, .
with R=3g,/l =1/tana, equation (19) read

5 - 1—§§tan2 a, I —— 29
E(2) 8 tana, (22)

When the electric field ratio betwedte touter surface of the drop and the inner
surface is equal to 2, equation (22) read

25l T ) ) T T T ) T
L T S e e
VISR SRS SRS NS RS RS NS N -

7 AR . S SO SO SRS SURMOUY U M S

dielectrc constant

0 g 10 15 20 25 a0 35 40 45
cone angle  deg
Fig. 7. Dielectric constant ratios v&is cone angles. The parallel lin
¢ = 88 indicates the dielectric constant of watdre Torresponding
cone angles of water are 7°4&nd 44.43
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j (23)

This ratio gives a good approximatad the minimum dielectric constant needed to
produce conical tips at the end of the drop. Figushows the dielectric ratio with respect to
cone angles. The minimum dielectric constant rei®4.4975 and the cone angle is 31.25
Equation (23) also gives reasonable results forlanger cone angles. The two singular points

in the graph in the limité/€ — ® correspond toa, - 45 and o, - 0. water has a

dielectric constant (88) greater than the criticaue for producing conical tips. The conical
interface for water is at two particular half argglg.450 and 44.430). One angle is stable
while the other is unstable.

£ 8 )
—=—-—|tan"a, In
E 3 tana,

4. MINIMUM ELECTRICG FIELD NECESSARY TO PRODUCE CONICAL ENDS

The minimum electric field required tocstin a drop with conical tips is a function of
the dielectric constart The units of quantities were removed by introdgadimensionless
variables, electric capillary and electric Bond numbé&;

r EEX
Icap = —2y2 and B -7~ .
T E, loe 2V

£ (20)

The volume of the liquid drop may be reduced tomvenient form

5

_l 2o _ 4 3 2%52
v_ja(z) dz—gB[ﬁ} (Ej

-
The electric bond number can be eliminated usingeon (24)

5

4( e 23 2 2 £)2
5= [ ()
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In order to find the minimum electric fieldg,, which produces conical tips, the finite
minimum volume of the drop must be found. This barobtained by minimizing. In terms

of new parameters, the electric field Es=E(2)/E,, radial distancea(2) =(&/€ -1)a(2)/l,,
axial distance z=[2(¢/z-1)/InR]""z/l,, and the internal excess pressure is

cap

p= (|cap /y(g/s——l))AP.Then the governing equations reduces to the sini@er

e . rvz 4 2 1/2 5/2
E-—(aE)=1 @, E’+p=a’ (), I[adz:EB {ﬁ} (éj ©). (26

For given value of internal excess presspreequation (264) andp)) determine the scaled

shape of the drop. The corresponding electric fieldquivalently the electric bond number is
necessary to find the shape of the drop. In ordatetermine the drop shape numerically, a
new parametey is defined asv = a?E,

C(EY(pE) s
(E*+p) (E*+p)

At the conical endy . o and the constant of integratian= 0. The electric field, which is symmetric
about; = o, may be determined by integrating the first omiéferential equatioh

(27)

dE  (SE*-2E+ |b)]/2(|§2 +p)

_ 28
dz 3E%-p (28)

If &= 0 is attained, then the shape of the drop follrars equation (2&).

Drop volume was numerically obtained for differevdlues of ; from equation 26(c)
(Figure.8). According to the figure, the dimense&sd drop volume tends to a finite minimum
as p . 1/3 and to infinity asp . -1. By symmetry ofe about the centre of the drop and from

equation (28)E(0)can be shown as the larger root3af - 2E+p =0,

E(0) = %(1+ (1- 3p)%) a(0) = 92 (29)

1+3p +(1- 3p)”2

and

The length and volume are given by the integrals

Q= [ 3E°-P . T 3E2-p 3
I = dE, V= dE 30
E(O)(SEZ —2E+ p)l/Z(Ez + D)Z E'(L)(?EZ - E+ p)J/Z(Ez + D)4 ( )
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dirmensionless drop volum
i)
T

0.3 0.6 0.4 -0.2 1] 0.2 0.4 0.6
p value

Fig. 8. Drop volume for different values of

Equations (26)(a) and (b) were solvetharcally for dimensionless shapes of the
drop for various; values. Deformation of the drop can be increaseiddyeasing p.

Assuming there is a minimum drop volufoe which a solution is possible, the
minimum electric fieldEnin

5/2

E_°© é = constant ( 3}

37



International Letters of Chemistry, Physics and Astronomy 3 (2012) 24-40

14 T T T T

surface tension

-1

minimum electric field Vm

o i i i i i i i i i
] 10 20 o 40 a0 B0 70 a0 a0 10C
dielectric constant

Fig. 10. Eninversus dielectric constant for different surfagestens.

The proportionality constant of tlequation (31) depends with the interfacial
tension between the drop and the surrounding media as a function of dielectric
constant for different aspect ratios is shown guiie 9. All the curves have overlapped. There
is also logarithm term of the aspect ratio whicls In@ significant effect on the minimum
electric field. We can predict that the minimumatle field which should be applied to
produce conical interfaces will not be affectedtoy aspect ratio of the drop.

The minimum electric field necessary to produce i@n interface varies

proportionally with the surface tensign in the formy"]/zé:c >17.59. Figure 10 shows the

variation of the minimum electric field necessasyproduce a conical drop with the surface
tension.

Surface tension of the water at@Gli€ was assumed to be 0.03 and a unit volume
of the drop was considered. Figures 11 and 12 septethe changing configuration of the
drop when the applied electric field strength isré@ased to the minimum value which
produces conical interface. The figure 12 shows rniwleled shapes for various applied
electric fields. The conical tips arise when thpe&s ratio of the drop is equal to 15. If the
field strength is increased further it will causedre deformation. The cone angles of the
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drop are between is 7.4&nd 44.48 The minimum electric field required to produceical
ends for a water drop was 1.0854%1Mits. The figure 12 shows that the cone anglthef
drop is decreasing with increasing applied fielcersgths making the drop more stable at
higher fields.

= ) S A S S -

e e e e

Fig. 11. Changing configuration of a water drop to| Fig. 12. For dielectric constant ratip= 14.497¢
conical tips with applied electric field strength highly deformed shapes form conical ends.

5. CONCLUSIONS

The governing equations using the mggion of slenderness gave analytic
characteristics of the drop shape and the minimlatirec field necessary to obtain conical
drops. The 3D calculations showed that there isndithg charge density for every dielectric
constant corresponding to the finite maximum of ¢harge separation of the liquid drop for
and applied electric field and the electric enevgya spherical drop can be maximized in a
weak dielectric by increasing the applied fieldeThinimum dielectric constant ratio need to
produce a conical tip at the end of the drop i$ bérresponding to a cone angle 32.ZFe
liquid drop volume changes with internal excesssguwee tending to a finite minimum.
Deformation of the drop can be increased by inengasternal excess pressure. Aspect ratio
which is significantly affected by interfacial teois and the excess pressure of the drop has a
sharp increment after the threshold value of th@ieg field is reached. With the decrease in
dielectric constant of the drop the field strengthich is necessary to obtain the same aspect
ratio has to be increased. For a particular dietecbnstant ratio, the threshold electric field
producing conical interfaces will not be affecteg the aspect ratio of the liquid drop but
increases with the increased surface tension ofigh&l. The minimum electric field varies

proportionally with the surface tension in the fgrifi’e, >17.59. The conical interface of

water has two half angles 74&nd 44.43. For the minimum dielectric ratio the cone angle
of the drop decreases with applied field making dn@ more stable at higher fields. The
minimum electric field producing a conical endsaof/ater drop was 1.0854x10nits.
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