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“The essence of scientific discovery relies onftud

that one looks at the same what everyone sees
and notices what nobody has seen.”

L. Pauling

ABSTRACT

In the paper, the adequate theory of oscillatprésented, being a sort of prelude to verificatibthe
classical theory of mechanics. The developed thépiyased on a properly understood notion of
energy, quantum value changes of its determinedsunes (potentials), as well as of such changes
types of sites of full energetic states which pnésehe essence of the true principle of the energy
conservation. In the first part of the paper thiagple of energy conservation was considered. Then
the energetic aspects of the oscillator motionhsit exemplary real system motion, were presented
in the second Part. This part of the paper is dml/tt the kinetics of a body in harmonic motion and
verification of the adequate theory of oscillatéit the end, the determination of the gravity
acceleration by means of mathematical penduluneifopmed to confirm the presented findings.
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1. INTRODUCTION

First two parts of the paper served to introdwaslers into the problems of verification
of the classical mechanics [1, 2]. General charaties of the classical mechanics was
presented based on the references. The exemptificat artifacts of the classical theory of
oscillator was developed. Part 2 of the paper veasdnsider the energetic aspects of
oscillator motion, by description of an exemplagalr system motion in reference to the
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existent differential equation of oscillator motioRart 3 covers kinetics of a body in
harmonic motion and verification of the adequatmtly of oscillator.

2. KINETICSOF A BODY INHARMONIC MOTION

Kinetics is a part of body dynamics (also kinengtiwhich does not take into account
its mass and neither inertia force by focusingdtiention only on such magnitudes like the
length of path/way, velocity, acceleration, impu(peoperly understood as the derivative of
acceleration or the third derivative of path lengtihhese frames of considerations are
sufficient to achieve an ultimate goal which wasussed by the Authors of this work. This
goal is a verification of the value of acceleratiohgravity just using this new adequate
theory of oscillator and the determined experimiesttadies with its application.

Further on these mentioned magnitudes will be cemed in function of time. All they
are variables in the space-time with the exceptibacceleration of gravity, with the value
being constant.

Coming out of the very source one should writet fitss initial/source differential
equation which was recently used also in other édugthworks [3-6]. This may give the
beginning of all description of the phenomenonhaf variable motion. Its solution will be the
dependence of the path/way length on time. The stext is simply to determine consecutive
derivatives of the way length in view of gettingetHunctional courses of velocity,
acceleration, impulse, and further still not nar(exad used herewith) the kinetic magnitudes.
Anyway their collection is in fact unlimited.

Firstly, here is this mentioned source differengigliation:

dx= i%dt a7

Particular symbols denote hergx — total differential of the path/way lengthx —
partial differential of this magnitudét — partial differential of timedt — total differential of
time. Signs (+),€) are operators, with (+) possessing a formal nmepand confirming only
the physical sense of determined description oh@npmenon, and-] attributing such a
sense to this description. One should admit thratreference to the accelerated variable
motion, such operation is not indispensable. Dpgon of the retarded motion requires a sort
of intervention.

The solution of this equation (17) has been presenh [3] concerned with the
fundamentals of surface smoothing by elastic gnigdivheels. Just this property of tool
brings about that the dynamics of abrasive graiag be considered in the machining zone.
Here also the need to use the considered equatjpeaes to describe properly in-depth the
variable motion of abrasive grains.

For the accelerated motion of a body more detagdation possesses the following
form:

t
X= Xo{eT ‘1j (18)
Retarded variable motion is characterized by theeddence of type:
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t

X=2X%|1-eT (19)

In these equations (18), (19), the symkalenotes the path lengtk, is the length of
space-time, that is the distance between the neigith potential fields, and is a time
constant. The last magnitude is interpreted asittie of body transition into the neighboring
potential field with a constant initial velocity.

For analyzed here the harmonic motion, the sympd simultaneously the amplitude
of this phenomenon. This motion, proceeding alltime with a constant amplitude, begins in
fact from the lower position of the body. Let usnbrit to that point of unstable static
potential field by means of a determined extertiahidus. The action force of this stimulus
F, the elasticity forces, inertia forceB, and the gravity forc€ — all these forces are in this
system the measures of interaction of the partigtdeelementsKig. 9). The unstable static
equilibrium of the system is reflected by the fallog equationS, + B; = Q + F;.

Q F
B
S, !
S;+B= Q +F

Fig. 9. Unstable time equilibrium of oscillator referrtxits lowest energetic position

If that external stimulus stops, then the actingédd-, will disappear and the body will
begin a harmonic free motion by a non-uniform dispment in the determined space-times
between their potential fields.
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The first space-time will be crossed by the bodthwihe accelerated variable motion,
the next one by a retarded motion. Afterwards tysle will be repeated again and again.
Courses of the path lengtia . 10) are described by the following equations (189)(1

4 t,=Tin2 T

y t,=Tn2
' (%)

0| T T‘®7

Fig. 10. Exponential courses of the path lengths of vibgamaterial body

As it is apparent, the plot of path lengttpossesses the form of shifted progressive
exponential function. This course finds its end the neighboring stable potential field
(denoted by asterisk) after a time equalipg= TIn2. This dependence results from the
formula (8) [2], after substituting = X..

Therefore this motion is an accelerated motion.

In the second space-time, where a retarded matkestplace, the course of the path
length corresponds with the shifted degressive eapiial function. This dependence, in turn,
results from the formula (19). It is worth notirftat the time constant of this course is at the
height of apparent field which overlaps (for conge® motion, this time accelerating
motion) with a stable potential field.

One may state that there is a real/proper spacéhéretarded motion, and further
improper one where the curve of the path lengtmdted with a dashed line) tends
asymptoticly to the mentioned apparent field.
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Now the following derivatives of the path length ymae determined. Thus for the
accelerated motion the following relationships hbgen obtained:

t t

. Odx_x
t t
_ X T —aal
a=X= d— _I_—e _I_e =a,e 21)
d3x t tog b 8
IR S i @)

where v denotes the velocitya denotes the acceleration, andlenotes just the impulse,
discussed earlier, at the beginning of this chapter

For the retarded motion, the following set of fofagiconcerning these physical
magnitudes are obtained:

t

. dX _ 2%
V=X=—= eT—2veT
dat T ° (@3)
o A 2% -t vy - -
ST g T2 T—?OeT—zaoeT (24)
d°X _ 2% 1 _ 2y v _23 1 _ . .1
|:—x:——t3:—)ZOeT:—ZOeT:—_?OeT:zOeT (25)

Just here the algebraic operatot), (enabling to obtain the formulae on the
acceleration and impulse, possesses a physica.sens

In the further considerations the graphical illastns have been omitted, concentrating
the attention on huge discrepancies between thetntlaose presented in the classical
mechanics [7]. The evidence has been revealedenexttimple of accelerated variable motion
(Fig. 11). It has been commonly known how these formula¢henpath length, velocity, and
acceleration were obtained in the classical the@yrther magnitudes could not be emerged
because the acceleration was the last one; a obrsteeleration with the derivative equaling
Zero).

One begins from the linear dependence of the uglami time and then gets to the
description of the path length by integrating tloenfer one, whereas the description of
acceleration is the result of differentiating tbenfiula on velocity.
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Fig. 11. Real and classical courses of the way lemgtrelocityv, and acceleratioa for accelerated
motion

As the result (Fig. 11a), a parabola of the patlgtle appears, spanned over the vertexes
of a triangle of the time constant and the spawoe-fiength (dashed area). This parabola and
other classical courses have been denoted byea ketin Fig. 11, as they form an aftermath
of the classical imagination. The classical coun$evelocity (Fig. 11b) is linear and it
connects the beginning of the coordinate systenm wiiital value of the velocity. This
corresponds with the usual real linearization ofam-linear of such type of the system
characteristics.
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Shocking results of such linearization were obtdine reference to the acceleration
course (Fig. 11c). Here the real characteristichefsystem were replaced by a straight line,
parallel to the time axis and passing through arfemal point of the characteristics. That way
the acceleration in the variable motion (here tteekerated motion) is constant and positive
according to the classical mechanics. To say morthe uniform motion the acceleration is
zero, and in the retarded motion it takes a cohstagative value. (How far from the truth
about reality!)

3. VERIFICATION OF THE ADEQUATE THEORY OF OSCILLATOR

To verify that new presented here the theory ofllasar, a spring oscillator has been
designed and manufacturdeid. 12). Thereafter the oscillator was imposed with ariaric
motion and some determined parameters were meastinatl made it possible to measure
the constant magnitudes which appear in the forend&scribing particular characteristics of
the system. A real value of the gravity acceleratieas also determined by means of the
mentioned oscillator.

The harmonic oscillator (Fig. 12) has a very singitecture. Its main elements are dead
weight 1 and pull spring 6. This spring is caugbivd to the sleeve 4 linked with a weight.
At the top, this spring is mounted on a bolt 5 @wiad with a grip 2 which in turn is
embedded in an arm 3 and fixed by means of a nOh7ne of the ends of the sleeve 4 there
is a rubber connection clip 8 which grips a pee&ed in the hole of this sleeve.

Fig. 12. Structure of harmonic oscillator (notations irtje
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At the beginning a series of experiments were peréal with the use of a pen by
recording the trajectory on the uniformly movingppa tape. It was stated that the formed
traces surely correspond with the exponential @jraeprogressive curve for the accelerated
motion and a degressive one for the retarded Mariamtion. (One should admit that
additional confirmation of this finding are the uéis of tests of vertical free cutting of
material by a single abrasive grain [3]. The simfilarms of traces were obtained in one
machining cycle.) Undoubtedly the real trajectoriifer in their shape from the sinusoid
which is still used to approximate thefid. 13). Only three common points possess real and
approximative courses. They are just on the pakfiglds. In the space-times an evident
differentiation of both characteristics occurs.

X X=X, {1-coswpt)

@ parallel luminous flux

@ screen

Fig. 13. Classical sinusoidal approximation of real cowfkthe path length of harmonically vibrating
a material body

One may connect these characteristic points (dmged points) with the motion of a
point on the periphery of an imaginative rotatimgle with the sinusoidal course in time of
the motion in the projection presented on the timacof motion of the oscillator.

It is enough to compare the time of one rotafigrof this circle with the time t4 of
transition of the vibrating body through four consiéve space-times (this is the period of
oscillator vibrationT = 4t,).
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Thus we have

P,

w,

where the right side of the equation results fromknown definition of the angular velocity
wo = 27l To.

Assuming further that timg = TIn2, one may learn the angular velocity of rotatién o
that virtual circle, that is:

(26)

2n T
4TIn2 TIn2

ay = (27)

Further on, by comparison the definition of angwalocity and the formula (27), one
obtains a conne*ction between the period of thisissid T, (at the same time with the
vibration periodl of oscillator) and the time constahtthat is:

T =T'=4TIn2 (28)

The course of length of this sinusoidal path inetirm the system connected with the
beginning of motion phenomenon, is described bydhewing relationship:

X= Xo(l_ COSC‘Jot) (29)

As can be seen in Fig. 13, this curve is lying belbe real characteristics for the
accelerated motion and for the retarded motiompjitears over that characteristics. One may
state, an approximation hysteresis takes place.

Therefore the shadow of that vibrating sphere/medals presented earlier in the
handbook [7], will not be moving in the shadowedjgction on the screen identically as the
shadow of sphere rotating on the circle.

There will be the shadows of two spheres visibletloe screen. As the result of
speculative creativity an approximation aberraappears.

This and other consequences of unjustified appration creationsKig. 14) are the
proof of some kind of the escapism.

That escape from the reality, as can be seen gleaRig. 14, leads to a strange notion
of reality, far away from the truth of the consieldéiphenomenon of the harmonic motion.
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Fig. 14. Real and classical courses of lengtlelocityv, and acceleratioa for the first cycle of
variable motion of oscillator
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The middle column of the Fig. 14 presents the gegbhillustration of real and
approximated courses of the path lengthvelocity v, and acceleratiom, as well as the
analytical records referred to these, rather fou#, courses.

The utmost strips describe the real courses ofmtigtioned magnitudes, on the left side
for the accelerated motion, and on the right sidefretarded motion, respectively.

The presented material clearly shows an unbelievédatk of sense of the classical
descriptions of the harmonic motion. The real amitibus courses possess only three
common points on the path length. Such points doappear at all and the areas of their
changes are separated in reference to the velocity.

This issue is even worse in case of the acceleratitere only the initial point is
common and further fragments of the classical cm®ad on considerably larger, that is
twice as large, the area reaching even negativesal

It is time now to check, by means of the oscilladad a new subordinated theory, the
value of the acceleration of gravity which islssiésumed and used in science. To determine
the acceleration of gravity it is enough to take prece of the theory.

It is that one which connects the grawtyvith the initial inertia acceleration. It results
that these accelerations describe the energetesstathe material body.

Now it is enough to take advantage of the propanita (21) where the time of a body
transition through the space-time, ifg, should be presented, connected with the time
constant by the following relationshige = TIn2. Then the existent equaliift,) = g should
be written, leading to:

TIn2 2
a(to):%e ! :T_Xzo: g

03

that is:

_ 2%
9= T2 (31)

and after introducing the dependerice t,/In2, to the formula (31) finally one obtains the
following formula on the acceleration of gravity:

2x (In2)
g %(In2)

t2 (32)
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This formula may be recorded in the form much $&mpy assuming all constant
values as one valu@ = 2(In2)* = 0.961. Therefore:

_ Xo
g= O.961¥ (33)

The initial static elongation of spring was = 0.040 m, and the amplitude of the
harmonic motionk, = 0.0277 m. The time corresponding to one hungextbds of vibration
of the oscillator motion was measured and therag everaged, obtainitg= 0.12 s. Finally:

g=096129277 _ agemms

(012)°

Now one may determine also the initial elasticilyck S,, and then the coefficient of
elasticityk of the spring. The mentioned force may be deterdchineaccordance with the rule
of instantaneous energy conservation (their measp@entials) presented by the equation
(10). Bt introducing the relatios, = gQ, into the principle structure one may write it as
follows:

3
(EQ + OIQJXS =3Q%, (34)
that after its solving, due to the coefficigpiives the result:

X, 3
X 2
and after introducing the variable valugsx — q = 0.5775, andy, = 0.577%), so finallyS,
= 0.5775 mg. The weight masswas 1 kg, s® = 1-3.85 kgm's > = 3.85N, and finallyS, =

0.57753.85 N = 2.223 N.
Now one may determine also the coefficient of etagtk, then:

k:AS:Sl_SO:Q_SO
Xs Xs Xs

and after introducing the above data:

q=3 (35)

(36)

( _ 385-2223
0.04

= 40.675N ™
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4. CONCLUSION

In conclusion to this Part 3 of the paper it is thostating that a verification of the
adequate theory of oscillator was presented. Acstra of the harmonic oscillator was
revealed. It was used to determine the true aat@earof gravitation which, as it appears, is
different than that commonly accepted in the liem

The last Part 4 of the paper will be provided teesd another method of calculation of
the acceleration of gravity in view of confirminiget finding presented in Part 3. There also
some general conclusions will be presented.
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