Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | Vol. 56, nr 2 | 149-162
Tytuł artykułu

Object-oriented model of comb drive microactuator

Warianty tytułu
PL
Zorientowany obiektowo model mikroaktuatora grzebieniowego
Języki publikacji
EN
Abstrakty
EN
The paper describes methods of electrostatic comb drive structure accelerometers (MEMS) design and analysis based on mechanical and electrostatic structural models. Accelerometers design is a highly interdisciplinary area and, therefore, different methods and tools have to be exploited. Both, mechanical and electric models of accelerometers give the input data for defining the object-oriented model, based on Matlab-Simulink platform, fulfilling the general demand of dynamic behaviour simulation of comb drive structure. The proposed by authors methodology valuable contribution to MEMS design methodology.
PL
Artykuł opisuje metody projektowania elektrostatycznych struktur grzebieniowych akcelerometrów MEMS i analizę opartą na mechanicznych i elektrostatycznych modelach strukturalnych. Projektowanie akcelerometrów MEMS jest zadaniem interdyscyplinarnym, w związku z tym, podczas projektowania muszą być wykorzystane różne metody projektowania. Mechaniczne i elektrostatyczne modele akcelerometrów umożliwiły zdefiniowanie Modelu Zorientowanego Obiektowo, opartego na platformie Matlab-Simulink, który pozwolił na symulacje zachowania rozważanej struktury grzebieniowej na wymuszenia dynamiczne. Proponowana przez Autorów metodologia jest wartościowym wkładem w metodologię projektowania MEMS. Przedstawioną metodologię można również zaadaptować do projektowania innych, multidyscyplinarnych systemów MEMS.
Wydawca

Rocznik
Strony
149-162
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
autor
  • Institute of Mechatronics and Information Systems, Technical University of Lodz, wiakslaw@p.lodz.pl
Bibliografia
  • 1. Avdeev I. et al.: Strongly coupled three-dimensional finite element transducer, J. Micromech. Microeng. 14, 2004, pp. 1491-1502.
  • 2. Cellier F. E.: Object-oriented Modeling: Means for Dealing with System Complexity. Proc. 15th Benelux Meeting on Systems and Control, Mierlo, The Netherlands, 1996, pp. 53-64.
  • 3. Davies F. R.: Design Tools and Issues of Silicon Micromachined (MEMS) Devices. 2nd International Conference on Engineering Design and Automation, Maui, Hawaii, August 9-12, 1998.
  • 4. Eloy J-Ch.: Getting better all the time of Yole Developpement reports, MEMS-market analysis, pp. 14-17, July 2005, Available (Juny 2006) http://www.eurosemi.eu.com
  • 5. Fedder G. K., Iyer S., Mukherjee T.: Automated Optimal Synthesis of Microresonators. International Conference on Solid State Sensors and Actuators, TRANSDUCERS '97, Chicago., 1997, 16-19 June 1997, Vol. 2, pp. 1109-1112.
  • 6. Fedder G. K., Jing Q.: A Hierarchical Circuit-Level Design Methodology for Microelectromechanical Systems. IEEE Transactions on circuits and systems - II: analog and digital signal processing, Vol. 46, No. 10, October 1999, pp. 1309-1315.
  • 7. Harouche I. P. F., Shafai C: Simulation of shaped comb drive as a stepped actuator for microtweezers application. Sensors and Actuators A 123-124, 2005, pp. 540-546.
  • 8. Houlihan R. et al.: Analysis and Design of a Capacitive Accelerometer Based on a Electrostatically Levitated Micro-Disk. Proc. SPIE Conf. on Reliability, Testing and Characterization of MEMS/MOEMS, San Francisco, 2001, pp. 277-286.
  • 9. Iyer S., Mukherjee T., Fedder G. K.: Multi-mode Sensitive Layout Synthesis of Microresonator. International Conference on Modelling and Simulation of Microsystems, Semiconductors, Sensors and Actuators, [MSM '98], Santa Clara, CA, April 6-8, 1998, pp. 392-397.
  • 10. Jing Q., Mukherjee T., Fedder G. K.: Schematic-based lumped parameterized behavioral modeling for suspended MEMS. Tech. Dig. Int. Conf. Computer-Aided Design, San Jose, CA, Nov. 10-14, 2002, pp. 367-373.
  • 11. Kraft M.: Closed loop digital accelerometer employing oversampling conversion. Coventry University, Ph.D. dissertation, 1997.
  • 12. Lee W. F., Chan P. K, Siek L.: Electrical Modelling of MEMS Sensor for Integrated Accelerometer Applications. Proceedings 1999 IEEE, Hong Kong Electronics Devices Meeting, 1999, pp. 88-91.
  • 13. Lewis C. P., Kraft M.: Simulation of a Micromachined Digital Accelerometer in SIMULINK and PSPICE. UKACC Int. Conf. on Control, Exeter UK, 1996, Vol 1, pp. 205-209.
  • 14. Martin C. et al.: Interactive Simulation of Object-Oriented Hybrid Models by Combined use of Ejs, Matlab/Simulink and Modelica/Dymola. Proc. 18th European Simulation Multiconference, 2004, pp. 210-215.
  • 15. Math Works: Simulink. User's Guide. Math Works, 2002.
  • 16. Nguyen C. T.-C: Micromechanical Resonators for Oscillators and Filters. Proc. of the 1995 IEEE International Ultrasonics Symposium, Seattle, WA, November 7-10, 1995, pp. 489-499.
  • 17. Rodgers S. M. et al.: A New Class Of High Force, Low-Voltage, Compliant Actuation Systems. Technical Digest of Solid-State Sensor and Actuator Workhop, Hillon Head Island, SC, USA, 2000.
  • 18. Roundy S., Wright P. K., Pister K. S. J.: Micro-Electrostatic Vibration-To-Electricity Converters. Proc. of IMECE2002 ASME International Mechanical Engineering Congress & Exposition, New Orleans, Louisiana, November 17-22, 2002.
  • 19. Schwarz P., Haase J.: Behavioral Modeling of Complex Heterogeneous Microsystems. Proc. 1st Intern. Forum on Design Languagues (FDL'98), Lausanne, Sept. 1998, Vol. 2, pp. 53-62.
  • 20. Schwarz P. et al.: Web-Based, Simulation-Oriented Training Courses in Electronics and Microsystems Technology. Proc. 5th EUROSIM Congress on Modelling and Simulation, Paris, September 6-10, 2004.
  • 21. Sterken T. et al.: An electret-bases electrostatic µ-generator. The 12th International Conference on Solid State Sensors, Actuators and Microsystems, Boston, June 6-12, 2003, pp.1291-1294.
  • 22. Sun W.: Multi-volume CAD Modeling for Heterogeneous Object Design and Fabrication. Journal of Computer Science and Technology, Vol 15, No. 1, 2000, pp. 27-36.
  • 23. Tang W.C., Nguyen T.-C. H., Howe R. T: Laterally driven polysilicon resonant microstructures. Sensors and Actuators, November, 1989, pp. 25-32.
  • 24. Teegarden D., Lorenz G., N e u l R.: How to model and simulate microgyroscope systems. IEEE SPECTRUM, July 1998, pp.66-75.
  • 25. Wiak S. et al.: Virtual Modeling and Optical Design of Intelligent Micro-accelerometers. 7th International Conference Artificial Intelligence and Soft Computing - ICAISC 2004; Zakopane, Poland, 7-11 June 2004 Springer, Subseries of Lecture Notes in Computer Science, pp. 942-947.
  • 26. Wiak S. et al.: Numerical (solid) modling of 3-d intelligent comb drive accelerometer structure - mechanical problem. Proceedings of Third Slovenian - Polish joint Seminar - Computational and Applied Electromagnetics, Maribor - Slovenia, 6-8 June, 2005, pp. 27-31.
  • 27. Xie H.: Gyroscope and Micromirror Design Using Vertical-Axis CMOS-MEMS Actuation and Sensing. PhD Report, Carnegie Institute of Technology, Carnegie Mellon University, 2002.
  • 28. Zhang G.: Design and Simulation of A CMOS-MEMS Accelerometer. Project Report, Carnegie Mellon University, May, 1998.
  • 29. Zhou Y.: Layout Synthesis of Accelerometers. MS Project Report, Department of Electrical and Computer Engineering, Carnegie Mellon University, 1998.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0043-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.