Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | R. 88, nr 12a | 247-250
Tytuł artykułu

Application of State Space Search Method to find a Low Voltage Solution for Ill-Conditioned System

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Implementacja metody przeszukiwania przestrzeni stanów w poszukiwaniu rozwiązań niskonapięciowych w sieciach o źle uwarunkowanych równaniach stanu
Języki publikacji
EN
Abstrakty
EN
This paper uses the State Space Search Method (SSSM) in polar coordinate form to obtain low voltage solution and maximum loading point of ill-condition power system. SSSM improves the direction of state variables (buses voltage and phase) of system buses based on optimal multiplier to converge load flow equations in ill-conditioned system. The advantage of SSSM is apparent in constant preservation of dimension of Jacobian matrix in load flow equations. Whereas another approaches such as Homotopy and continuation power flow vary the framework of Jacobian matrix based on predictor and corrector elements during enhancing load demand. The calculation procedure of SSSM is depending on classical Newton-Raphson load flow method. The reliability of SSSM is indicated by IEEE test systems, 14 and 30 buses in well and ill-conditioned at maximum loading point as systems.
PL
W artykule opisano sposób wykorzystania metody przeszukiwania przestrzeni stanów we współrzędnych biegunowych, w celu uzyskania rozwiązań niskonapięciowych oraz punktu maksymalnego obciążenia w systemach energetycznych oraz źle uwarunkowanych równaniach stanu. Metoda zwiększa poprawność doboru zmiennych stanu systemu poprzez wyznaczenie optymalnego współczynnika skupienia równań przepływu mocy do obciążenia w systemie. Obliczenia oparto na metodzie Newton'a-Raphson’a określania przepływu mocy.
Wydawca

Rocznik
Strony
247-250
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
autor
Bibliografia
  • [1] B. Stott, “Review of load-flow calculation methods”, Proc. IEEE, vol. 62 n. 1, pp. 916-929. July 1974.
  • [2] Wang. Y, da Silva. L.C.P and Wilsun Xu, Investigation of the relationship between ill-conditioned power flow and voltage collapse, IEEE Power Engineering Review, pp. 43-45 vol.20 n.4, July 2000.
  • [3] Felix F. Wu “Theoretical Study Of The Convergence of The Fast Decoupled Load Flow”, IEEE Trans. Power Syst , vol. 96 n.2, January 1977.
  • [4] Y. Tamura, H. Mori and S. Iwamoto, “Relationship Between Voltage Instability and Multiple Load Flow Solutions in Electric Power Systems”, IEEE Trans. Power App .Syst., vol. 102 n. 5 pp.1115 - 1125, May 1983.
  • [5] A. Z. de Souza, C. A. Cañizares, and V. H. Quintana, “New Techniques to Speed Up Voltage Collapse Computations Using Tangent Vector”, IEEE Trans. Power Syst, vol. 12 n.3, pp, 1380-1387August 1997.
  • [6] Ning Xie, Ettore Bompard, Roberto, Napoli Franco Torelli “Widely convergent method for finding solutions of simultaneous nonlinear equations”. Electric Power Systems Research journal Volume 83, Issue 1, Pages 1-266 February 2012.
  • [7] R. B. L. Guedes, L. F. C. Alberto and N. G. Bretas, Power system low-voltage solutions using an auxiliary gradient system for voltage collapse purposes, IEEE Trans. Power Syst, vol. 20 n.3 pp1528-1537, August 2005.
  • [8] F. Milano, Continuous Newton’s Method for Power Flow analysis, IEEE Trans. Power Syst, Vol. 24 n.1, pp. 50-57, February 2009.
  • [9] Shahriari, A. ; Bakar, A.H.A. ; Mokhlis, H. “Comparative studies on Non-Divergent Load flow methods in well, ill and unsolvable condition” IEEE Conference Power System Technology (POWERCON), 2010.
  • [10] Shao-Hua Li and Hsiao-Dong Chiang, “Continuation Power Flow With Nonlinear Power Injection Variations: A Piecewise Linear Approximation”, IEEE Trans. Power Syst, vol. 23 n.4 pp. 1637 - 1643., November 2008.
  • [11] Y. Chen and C. Shen, “ A Jacobian-free Mewton-GMRES(m) method with adaptive preconditioner and its application for power flow calculations” IEEE Trans. Power Syst., vol. 21 n. 3, August .2006, pp. 1096-1103.
  • [12] Yorino N., Hua-Qiang Li, Sasaki H., A predictor/corrector scheme for obtaining Q-limit points for power flow studies, IEEE Trans. Power Syst, vol.20 n. 2, F, pp.130-137, February 2005.
  • [13] S. Iwamoto and Y. Tamura, A load flow calculation method for ill conditioned power systems, IEEE Trans. Power App. Syst., vol. 100 n .3, , pp. 1736-1743,April1981.
  • [14] K. Iba, H. Suzuki, M. Egawa, and T. Watanabe, A method for finding a pair of multiple load flow solutions in bulk power systems, IEEE Trans. Power Syst., vol. 5 n.2, pp. 582-591, May 1990.
  • [15] T. J. Overbye and R. P. Klump, Effective calculation of power system low -voltage solutions, IEEE Trans. Power Syst., vol. 11 n.1 pp.75-82 ., February 1996.
  • [16] M. D. Schaffer and D. J. Tylavsky, A nondiverging polar form Newton-based power flow, IEEE Trans. Ind. App., vol. 24 n.1, pp.870-877.September/October 1988.
  • [17] L. M. C. Braz, C. A. Castro, and C. A. F. Murari , A critical evaluation of step size optimization based load flow methods, IEEE Trans. Power Syst., vol. 15 n.1, , pp. 202-207, February 2000
  • [18] J. E. Tate and T. J. Overbye, A comparison of the optimal multiplier in polar and rectangular coordinates, IEEE Trans. Power Syst., vol. 20 n 4. , pp. 1667-1674, November 2005.
  • [19] Huang, W.-T.; Yao, K.-C.; “New network sensitivity-based approach for real time complex power flow calculation” IET Generation, Transmission & Distribution 2011 Vol. 6, Iss. 2, pp. 109- 12. 2012.
  • [20] Available: www.ee.washington.edu/research/pstca.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS1-0050-0077
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.