Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | Nr 45 | 111-120
Tytuł artykułu

The semi normed space defined by a double gai sequence of modulus function

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
In this paper we introduce the sequence spaces x2m(p, q, u), using an modulus function M and defined over a semi normed space (X, q); semi normed by q. We study some properties of these sequence spaces and obtain some inclusion relations.
Wydawca

Rocznik
Tom
Strony
111-120
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
Bibliografia
  • [1] Apostol T., Mathematical Analysis, Addison-wesley, London, 1978.
  • [2] Basarir M., Solancan O., On some double sequence spaces, J. Indian Acad. Math., 21(2)(1999), 193-200.
  • [3] Bromwich, An introduction to the theory of infinite series, Macmillan and Co.Ltd., New York, 1965.
  • [4] Colak R., Turkmenoglu A., The double sequence spaces l(p), c(p) (to appear),
  • [5] Hardy G.H., On the convergence of certain multiple series, Proc. Camb. Phil. Soc., 19(1917), 86-95.
  • [6] Moricz F., Extention of the spaces c and c0 from single to double sequences, Acta. Math. Hungerica, 57(1-2)(1991), 129-136.
  • [7] Moricz F., Rhoades B.E., Almost convergence of double sequences and strong regularity of summability matrices, Math. Proc. Camb. Phil. Soc., 104 (1988), 283-294.
  • [8] Tripathy B.C., On statistically convergent double sequences, Tamkang J. Math., 34(3)(2003), 231-237.
  • [9] Turkmenoglu A., Matrix transformation between some classes of double sequences, Jour. Inst. of math. and Comp. Sci. (Math. Seri.), 12(1)(1999), 23-31.
  • [10] Orlicz W., Über Raume (Lm), Bull. Int. Acad. Polon. Sci. A, (1936), 93-107.
  • [11] Lindenstrauss J., Tzafriri L., On Orlicz sequence spaces, Israel J. Math., 10(1971), 379-390.
  • [12] Parashar S.D., Choudhary B., Sequence spaces defned by Orlicz functions, Indian J. Pure Appl. Math., 25(4)(1994), 419-428.
  • [13] Mursaleen M., Khan M.A., Qamaruddin, Difference sequence spaces defned by Orlicz functions, Demonstratio Math., Vol. XXXII, (1999), 145-150.
  • [14] Bektas C., Altin Y., The sequence space lM (p, q, s) on seminormed spaces, Indian J. Pure Appl. Math., 34(4)(2003), 529-534.
  • [15] Tripathy B.C., Et M., Altin Y., Generalized difference sequence spaces defned by Orlicz function in a locally convex space, J. Analysis and Applications, 1(3)(2003), 175-192.
  • [16] Chandrasekhara Rao K., Subramanian N., The Orlicz space of entire sequences, Int. J. Math. Math. Sci., 68(2004), 3755-3764.
  • [17] Krasnoselskii M.A., Rutickii Y.B., Convex functions and Orlicz spaces, Gorningen, Netherlands, 1961.
  • [18] Nakano H., Concave modulars, J. Math. Soc. Japan, 5(1953), 29-49.
  • [19] Ruckle W.H., FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25(1973), 973-978.
  • [20] Maddox I.J., Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc, 100(1)(1986), 161-166.
  • [21] Divergent series Oxford at the Clarendon Press 1949
  • [22] Gökhan A., Colak R., The double sequence spaces c(p), Appl. Math. Comput., 157(2)(2004), 491-501.
  • [23] Gokhan A., Colak R., Double sequence space l(p), ibid., 160(1)(2005), 147-153.
  • [24] Zeltser M., Investigation of Double Sequence Spaces by Soft and Hard Analitical Methods, Dissertationes Mathematicae Universitatis Tartuensis 25, Tartu University Press, Univ. of Tartu, Faculty of Mathematics and Computer Science, Tartu, 2001.
  • [25] Mursaleen M., Edely O.H.H., Statistical convergence of double sequences, J. Math. Anal. Appl., 288(1)(2003), 223-231.
  • [26] Mursaleen M., Almost strongly regular matrices and a core theorem for double sequences, J. Math. Anal. Appl., 293(2)(2004), 523-531.
  • [27] Mursaleen M., Edely O.H.H., Almost convergence and a core theorem for double sequences, J. Math. Anal. Appl., 293(2)(2004), 532-540.
  • [28] Altay B., Basar F., Some new spaces of double sequences, J. Math. Anal. Appl., 309(1)(2005), 70-90.
  • [29] Basar F., Sever Y., The space Lp of double sequences, Math. J. Okayama Univ., 51(2009), 149-157.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPP3-0003-0079
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.