Czasopismo
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Assuming that a Nemytskii operator maps a subset of the space of bounded variation functions in the sense of Riesz into another space of the same type, and is uniformly continuous, we prove that the generator of the operator is an affine function.
Czasopismo
Rocznik
Tom
Strony
5-11
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
autor
autor
autor
- Universidad Central de Venezuela Facultad de Ingeniería Ciclo Básico, Caracas-Venezuela, anra27@gmail.com
Bibliografia
- [1] Appell J., Zabrejko P.P., Nonlinear Superposition Operator, Cambridge University Press, New York, 1990.
- [2] Ciemnoczolowski J., Orlicz W., Composing functions of bounded ϕ-variation, Proc. Amer. Math. Soc., 96(1986), 431–436.
- [3] Chistyakov V.V., Generalized variation of mappings with applications to composition operators and multifunctions, Positivity, 5(2)(2001), 323–358.
- [4] Chistyakov V.V., Mappings of generalized variation and composition operators, Journal of Math. Sci., 110(2)(2002), 2455–2466.
- [5] Kuczma M., An introduction to the theory of functional equations and inequalities, Polish Scientific Editors and Silesian University, Warszawa - Kraków - Katowice, 1985.
- [6] Matkowski J., Functional equations and Nemytskii operators, Funkc. Ekvacioj Ser. Int., 25(1982), 127–132.
- [7] Matkowski J., Uniformly continuous superposition operators in space of differentiable function and absolutely continuous functions, Internat. Ser. Numer. Math., 157(2008), 155–166.
- [8] Matkowski J., Uniformly continuous superposition operators in space of Hölder functions, J. Math. Anal. Appl., 359(2009), 56–61.
- [9] Matkowski J., Uniformly continuous superposition operators in space of bounded variation functions, accepted for Math. Nach..
- [10] Matkowski J., Miś J., On a characterization of Lipschitzian operators of substitution in the space BV < a, b >, Math. Nachr., 117(1984), 155–159.
- [11] Natanson I.P., Theory of functions of a real variable, vol. I, Frederick Ungar publishing Co., New York, 1955.
- [12] Merentes N., Composition of functions of bounded ϕ-variation, P.U.M.A., Ser. 1, (1991), 39–45.
- [13] Wiener N., The quadratic variation of function and its Fourier coefficients, Massachusett. J. Math., 3(1924), 72–94.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPP3-0002-0061