Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | Vol. 33, No. 2 | 193-207
Tytuł artykułu

Multi criteria programming in roboust estimation for interval data

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Robust statistical regression is a regression which is insensitive to so called excess observations, due to measurement errors or non-typical observations. Various coefficients selection criteria - such as minimization of the weighted sum of squared deviations, minimization of the sum of residuals absolute values, minimization of the median of squared residuals - are used to determine the robust regression equation for discrete data. Similarly, in the case of regression with interval data various methods are used to determine the robust regression equation, e.g. the multi criteria programming. In the paper a method of constructing a robust linear regression for interval data is proposed, which makes use of the multi criteria programming, in which the median criterion is proposed as the robustness criterion. We propose a procedure for arriving at the final interval regression (using various models) and apply this procedure to constructing an interval regression model for electricity load in a Polish city.
Wydawca

Rocznik
Strony
193-207
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
autor
  • Institute of Industrial Engineering and Management, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1]Alfares H., K., Nazeeruddin M., Electric load forecasting: literature survey and classification of methods, International Journal of Systems Science, 33, 2002, 23-34.
  • [2]Gladysz B., The electric power load fuzzy regression models, in O. Hryniewicz, J. Kacprzyk, D. Kuchta (eds.), Issues in Soft Computing Decisions and Operations Research, Akademicka Oficyna Wydawnicza Exit, Warszawa, 2005, 171-180.
  • [3]Hampel F. R., Ronchetti E., M., Rousseeuw P., J., Stahel W., A.. Robust Statistics. The Approach based on Influence Functions, John Wiley & Sons, New York, 2006.
  • [4]Nasrabadi M. M., Nasrabadi E., Nasrabadi A. R., Fuzzy linear regression analysis: A multi-objective programming approach, Applied Mathematics and Computation, 163, 2005,245-251.
  • [5]Ozelkan E. C., Duckstein L., Multi-objective fuzzy regression: a general framework, Computers & Operation Research, 27, 2002, 635-652.
  • [6]Tanaka H., Fuzzy data analysis by possibilisic linear models, Fuzzy Sets and Systems, 24,1987,363-375.
  • [7]Tanaka H., Guo P., Possibilistic Data Analysis for Operations Research. A Springer-Verlag Company, Heidelberg, 1999.
  • [8]Tanaka H., Uejima S., Asai K., Linear regression analysis with fuzzy model, IEEE Transaction on System, Man and Cybernetics, 12, 1982, 903-907.
  • [9]Peters G., Fuzzy linear regression with fuzzy intervals, Fuzzy Sets and Systems, 63, 1994,45-55.
  • [10]Malko J., Selected Problems for Forecasting in Electricity Power Systems (in Polish), Publishing House Wroclaw University of Technology, Wroclaw, 1995.
  • [11]Nazarko J., Zalewski W., The fuzzy regression approach to peak load estimation in power distribution systems, IEEE Transactions on Power Systems, 8, 1999, 809-814
  • [12]Shein R., Fuzzy cause relation analysis in time series, in: J. Kacprzyk, M. Fedrizzi (eds.), Fuzzy Regression Analysis, Omnitech Press Warsaw & Physica-Verlag Heidelberg, 1992, 228-234.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPP1-0088-0085
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.