Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | Nr 4-5 | 94-98
Tytuł artykułu

Pomiar współczynnika oporu i czynnika kształtu zrębków wierzby metodą aerodynamiczną

Warianty tytułu
EN
Determination of the drag coefficient and shape factor for irregulator chips of energetic willow Salix viminalis
Języki publikacji
PL
Abstrakty
PL
W pracy przedstawiono pomiar czynnika kształtu i współczynnika oporu cząstek nieizometrycznych takich jak zrębki wierzby energetycznej. W celu wyznaczenia powyższych parametrów zaprojektowano i zbudowano aparat, w którym dane eksperymentalne otrzymano metodą aerodynamiczną. Uzyskano eksperymentalne zależności pomiędzy współczynnikiem oporu a liczbą Reynoldsa dla wszystkich badanych zrębków i uzyskano uśrednioną wartość sferyczności dla badanej mieszanki. Dla wszystkich badanych frakcji mieści się ona w zakresie 0.612-0.676.
EN
The paper presents the results of experimental determination of the shape factor and drag coefficient of non-isometric particles like wood chips. In order to determine these parameters a specially constructed set-up was built. The experimental relationship between the drag coefficient and the Reynolds number for wood chips investigated was obtained altogether with the mean value of sphericity equals to 0.612-0.676.
Wydawca

Rocznik
Tom
Strony
94-98
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
autor
  • Wydział Inżynierii Procesowej i Ochrony Środowiska, Politechnika Łódzka,Łódź
Bibliografia
  • 1. N.P. Cheremisinoff: Encyclopedia of Fluid Mechanics. Gulf Publishing Company. Houston. Texas. 1986.
  • 2. H. Littman, M.H. Morgan, J.D. Paccione: A pseudo-Stokes representation of the effective drag coefficient for large particles entrained in a turbulent air-stream, Powder Technology. 1996, 87, 169.
  • 3. A. Haider, O. Levenspiel: Drag coefficient and terminal velocity of spherical and non-spherical particles, Powder Technology. 1989, 58, 36.
  • 4. V. Dolejs, P. Dolecek, B. Siska: Drag and fall velocity of a spherical particle in generalized newtonian and viscoplastic fluids, Chemical Engineering and Processing. 1998, 37, 189.
  • 5. A. Brucato, F. Grisafi, G. Montante: Particle drag coefficients in turbulent fluids. Chemical Engineering Science. 1998, 53, 18, 3295.
  • 6. I. Machac, B. Siska, L. Machacova: Terminal falling velocity of spherical particles moving through a Carreau model fluid, Chemical Engineering and Processing. 2000, 39, 365.
  • 7. C. Zhu, K. Lam, H.-H. Chu, X.-D. Tang, G. Liu: Drag forces of interacting spheres in power-law fluids. Mechanics Research Communications, 2003. 30, 651.
  • 8. Z. Cui, J.M. Fan, A.-H. Park: Drag coefficients for a settling sphere with microbubble drag reduction effects, Powder Technology. 2003, 138, 132.
  • 9. S. Tran-Cong, M. Gay, E.E. Michaelides: Drag coefficient of irregularly shaped particles, Powder Technology. 2004, 139, 21.
  • 10. V.C. Kelessidis: An explicit equation for the terminal velocity of solid spheres falling in pseudoplastic liquids, Chemical Engineering Science. 2004, 59, 4437.
  • 11. R.P. Chhabra, L. Agarwal, N.K. Sinha: Drag on non-spherical particles: an evaluation of available methods, Powder Technology. 1999, 101, 288.
  • 12. P.K. Swamee, C.S.S. Ojha: Drag coefficient and fall velocity of non-spherical particles, Journal of Hydraulic Engineering. 1991, 117, 5, 660.
  • 13. D. Rodrique, R.P. Chhambra, D. Kee: Drag on non-spherical particles in non-Newtonian fluids, The Canadian Journal of Chemical Engineering. 1994, 72, 588.
  • 14. B. Siska, H. Bendova, I. Machac: Terminal velocity of non-spherical particles falling through a Carreau model liquid, Chemical Engineering and Processing. 2005, 44, 1312.
  • 15. Z.L.j. Arsenijevic, Z.B. Grabovcic, R.V. Garic-Grulovic, F.K. Zdanski: Determination of non-spherical particle terminal velocity using particulate expansion data, Powder Technology. 1999, 103, 3, 265.
  • 16. H.Y. Xie, D.W. Zhang: Stokes shape factor and its application in the measurement of sphericity of non-spherical particles, Powder Technology. 2001, 114, 102.
  • 17. A. Unnikrishan, R.P. Chhabra: An experimental study of motion of cylinders in Newtonian fluids: wall effects and drag coefficient. The Canadian Journal of Chemical Engineering. 1991, 69, 729.
  • 18. G.V. Madhav, R.P. Chhabra: Drag on non-spherical particles in viscous fluids. International Journal of Mineral Processing. 1995, 43, 15.
  • 19. R.P. Chhabra, A. McKay, P. Wong: Drag on discs and square plates in pseudoplastic polymer solutions. Chemical Engineering Science, 1996. 51, 24, 5353.
  • 20. 7. Machac, B. Siska, R. Teichman: Fall of non-spherical particles in a Carreau model liquid, Chemical Engineering and Processing. 2002, 41, 577.
  • 21. P. Rajitha, R.P. Chhabra, N.E. Sabiri, J. Comiti: Drag on non-spherical particles in power law non-Newtonian media, International Journal of Mineral Processing. 2006, 78, 110.
  • 22. T. Allen: Particle Size Measurement, Chapman and Hall, London, 1974.
  • 23. M. Serwiński: Zasady inżynierii chemicznej i procesowej, WNT, Warszawa, 1982.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPP1-0078-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.