Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | Vol. 31, No. 3-4 | 243-262
Tytuł artykułu

Fast reasoning in a rule-based system with uncertainty

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The knowledge processed in empirical domains is more or less uncertain. In order to support people who deal with them, expert systems with uncertainty are used. The expert systems that serve for planning or simulation purposes are often implemented as rule-based systems. To express the uncertainty of facts and rules, different mathematical methods are used: from probability factors and modal logics to the Zadeh's fuzzy logic. The last method is the most general, and it helps to conclude very reliable hypotheses. In the simulation systems both the conclusions' reliability and the time necessary for reasonings are of great importance. In this paper we point at the rule of convergence as a method of reasoning which allows to speed up reasonings performed in rule-based systems with uncertainty. We discuss its advantages, limitations and possible applications.
Wydawca

Rocznik
Strony
243-262
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
  • Poznań University of Technology, Institute of Control and Computer Science Engineering, Pl. M. Skłodowskiej-Curie 5, 60-965 Poznań, Poland, beata.jankowska@put.poznan.pl
Bibliografia
  • [1] Carnap R., The two Concepts of Probability, Logical Foundations of Probability, University of Chicago Press, 1950, 19-51.
  • [2] Castillo E., Guttierez J.M., Hadi A.S., Expert Systems and Probabilistic Network Models, Springer-Verlag, New York, 1997.
  • [3] Deutsch T., Cramp D., Carson E., Decision, Computers and Medicin. The Informatics of Pharmacotherapy, Elsevier Science, Amsterdam, 2001.
  • [4] Duda R., Gaschnig H., Hart P., Model Design in the PROSPECTOR Consultant System for Mineral Exploration, Expert Systems in the Micro-electronic Age, ed. Donald Michie, Edinburgh University Press, 1979, 153-167.
  • [5] Giarratano J., Riley G, Expert Systems, Principles and Programming, Fourth Edition, Brooks/Cole Pub Co., 2004.
  • [6] Grzymala-Busse J., Managing Uncertainty in Expert Systems, Kluwer Academic Publishers, 1991.
  • [7] Hayes-Roth F., Rule-based Systems, Communications of the ACM, 28 (9), 1985, 921-932.
  • [8] Heckerman D., An empirical comparison of three inference methods, Proceedings of the Fourth Annual Conference on Uncertainty in Artificial Intelligence, North-Holland, 1990,283-302.
  • [9] Jankowska B., Methods of knowledge engineering for prognosticating the effects of a bronchial asthma treatment (Zastosowanie metod inżynierii wiedzy w prognozowaniu efektów leczenia astmy oskrzelowej), Proceedings of '4th Local Scientific Conference SzI-15, Siedlce - Warszawa, Poland, 2000, 341-348.
  • [10]Jankowska B., How to speed up reasoning in a system with uncertainty?, Innovations in Applied Artificial Intelligence, LNAI 3029, Springer-Verlag, 2004, 817-826.
  • [11] Jankowska B., Truth maintenance in an Expert System with Uncertainty, Schedae Informaticae, 14, 2005, 61-74.
  • [12] Jankowska B., How to Secure a High Quality Knowledge Base in a Rule-based System with Uncertainty?, International Journal of Applied Mathematics and Computer Science, 16, 2, 2006,251-262.
  • [13] Lucas P., Gaag L. van der, Principles of Expert Systems, Addison-Wesiey Publishing Company, 1991.
  • [14] Lucas P.J.F., Certainty-factor-like structures in Bayesian belief networks, Knowledge-Based Systems, 14, 2001, 327-335.
  • [15] Musen M. et al., OPAL: Use a Domain Model to Drive an Interactive Knowledge-Editing Tool, International Journal of Man-Machine Studies, 26, 1987, 105-121.
  • [16] Oniśko A., Lucas P., Druzdzel M.J., Comparison of Rule-based and Bayesian Network Approaches in Medical Diagnostic Systems, Proceedings of the Eighth Conference on Artificial Intelligence in Medicine, LNAI, Springer-Verlag, 2001, 281-292.
  • [17] Orchard R.A., FuzzyCLIPS Version 6.04A. User's Guide, National Research Council, Canada, 1998.
  • [18] Pearl J., Probabilistic Reasoning in Intelligent Systems. Networks of Plausible Inference, Morgan Kaufmann, San Mateo, CA. 1988.
  • [19] Shafer G., A Mathematical Theory of Evidence, Princeton University Press, 1976.
  • [20] Shortliffe E., Computer-Based Medical Consultations: MYCIN, American I Elsevier,1976.
  • [21] Worldwide Strategy of Bronchial Asthma Diagnosis, Treatment and its Prevention (Ogólnoświatowa strategia rozpoznawania, leczenia i prewencji astmy), NHBI/WHO ; Report, Medycyna Praktyczna, wydanie specjalne 6/2002.
  • [22] Zadeh L.A., Fuzzy Sets, Information and Control, S, 1965, 338-353.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPP1-0069-0091
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.