Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | No. 7 | 79-116
Tytuł artykułu

Numerical investigation of localized fracture phenomena in inelastic solids

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main objective of the present paper is to discuss a very efficient procedure of the numerical investigation of localized fracture in inelastic solids generated by impact-loaded adiabatic processes. Particular attention is focused on the proper description of a ductile mode of fracture propagating along the shear band for high impact velocities. This procedure of investigation is based on the utilization of the finite difference method for regularized thermo-elasto-viscoplastic constitutive model of damaged material. A general constitutive model of thermo-elasto-viscoplastic damaged polycrystal-line solids with a finite set of internal variables is used. The set of internal state variables consists of two scalars, namely equivalent inelastic deformation and volume fraction porosity. The equivalent inelastic deformation can describe the dissipation effects generated by viscoplastic flow phenomena and the volume fraction porosity takes into account the microdamage evolution effects. The relaxation time is used as a regularization parameter. Fracture criterion based on the evolution of microdamage is assumed. As a numerical example we consider dynamic shear band propagation and localized fracture in an asymmetrically impact-loaded prenotched thin plate. The impact loading is simulated by a velocity boundary condition which are the results of dynamic contact problem. The separation of the projectile from the specimen, resulting from wave reflections within the projectile and the specimen, occurs in the phenomenon. A thin shear band region of finite width which undergoes significant deformation and temperature rise has been determined. Its evolution until occurrence of final fracture has been simulated. Shear band advance as a function of time, the evolution of the Mises stress, equivalent plastic deformation, temperature, the microdamage and the crack path in the fracture region have been determined. Qualitative comparison of numerical results with experimental observation data has been presented. The numerical results obtained have proven the usefulness of the thermo-clasto-viscoplastic theory in the investigation of dynamic shear band propagations and localized fracture.
Wydawca

Rocznik
Tom
Strony
79-116
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Świętokrzyska 21, 00-049 Warsaw, Poland Tel.: +48 22 8261281 ext. 210; fax: +48 22 8269815, pperzyna@ippt.gov.pl
Bibliografia
  • 1. Abraham, R., Marsden, J.E., and Ratiu, T. (1988) Manifolds, Tensor Analy-sis and Applications. Springer, Berlin.
  • 2. Chakrabarti, A.K., and Spretnak, J.W. (1975) "Instability of plastic flow in Ihe direction of pure shear." Metallurgical Transactions, 6A, 733-747.
  • 3. Chi, Y.C., Lee, S.H., Cho, K. and Duffy, J. (1988) The effects oftempering and test temperatures on the dynamie fracture initiation behaviour of an AISI4340 VAR steeL Brown University Technical Report, August.
  • 4. Cho. K., Chi, Y.C. and Duffy, J. (1988) Microscopic observańom of adia-balic shear bands in three different steels. Brown University Report No DAAL03-88-K-0015/3, Septembcr.
  • 5. Coleman, B.D., and Moll, W. (1963) "The thermodynamics of elastic mate-rials with heat conduction and viscosity." Arch. Rational Mech, Anai, 13, 167-178.
  • 6. Curran, D.R., Seaman, L., and Shockey, D.A. (1987) "Dynamie failurc of solids." Physics Reports, 147, 253-388.
  • 7. Dornowski, W, (1999) "Influence of fmite deforrnation on the growth mechanism of microvoids conlained in structural metals." Arch. Mechanics,51,71-86.
  • 8. Dornowski, W., and Perzyna, P. (1999) "Constitutivc modelling of inclastic solids for plastic flow processes under cyclic dynamie loadings." Transac-tion of the ASME, J, Eng. Materials and Technology, 121,210-220.
  • 9. Dornowski, W., and Perzyna, P. (2000) "Localization phenomena in thermo-viscoplastic flow processes under cyclic dynamie loadings." CA MES, l, 117-160.
  • 10. Dornowski, W. and Perzyna, P. (2002) "Numerical analysis of maerocrack propagation along a bimaterial interface under dynamie loading processes". Int. J. Solids and Structures, 39, 4949-4977.
  • 11. Duszek, M.K. and Perzyna, P. (1991) "The localization of plastic deforma-tion in thcrmoplastic solids". Int. J. Solids Structures, 27, 1419-1443.
  • 12. Duszek-Perzyna, M.K. and Perzyna, P. (1994) "Analysis of the influence of different effects on criteria for adiabatic shear band localizalion in inelastic solids". In Proceedings Materia! Imtabilities: Theory and Applications, ASME Congress, Chicago, 9-11 November 1994 (Eds. R.C. Batra and H.M. Zbib), AMD-Vol. 183/MD-Vol. 50, ASME, New York, pp. 59-85.
  • 13. Glema, A., Łodygowski, T. and Perzyna, P. (2004) "Numerical investigalion of dynamie shear bands in inelastic solids as a problem of mesomcchanics" International Congress of Theoretical and Applied Mechanics, 15-21 August, 2004, Warsaw, Poland.
  • 14. Guduru, P.R., Rosakis, A, J. and Ravichandran, G. (2001) "Dynamie shear bands: an inycstigation using high spced optical and infrarcd diagnostic". Mechanics of Materials, 33, 371-402.
  • 15. Hutchinson, J.W. (2000) "Plasticity at the micron scalę". Int. J. Solids and Structures, 37, 225-238.
  • 16. Johnson, J.N. (1981) "Dynamie fracture and spallation in ductilc solids." J. Appl.Phys., 52,28\2~2825.
  • 17. Li, S., Liu, W .-K., Qian, D., Guduru, P.R. and Rosakis, A.J. (2001) "Dynamie shear band propagation and micro-structurc of adiabatic shear band". Comput, MethodsAppl. Mech, Engng., 191, 73-92.
  • 18. Łodygowski, T. and Perzyna, P. (1997) "Numerical modelling of localized fracture of inelastic solids in dynamie loading processes". Int. J. Num. Meth. Engng., 40, 4137-4158.
  • 19. Marsden, J.E., and Hughes, T.J.R. (1983) Mathematical Foundations of Elasticity. Prentice-Hall, Englcwood Cliffs, New York.
  • 20. Necdleman, A. (2000) "Computational mechanics al the mesoscale". Acta Materialia, 48, 105-124.
  • 21. Nemcs, J.A., and Eftis, J. (1993) "Constitutive modelling of the dynamie fracture of smooth tensile bars." Int. J. Plasticity, 9, 243-270.
  • 22. Oldroyd, J. (1950) "On the formulation of rheological eąuations of state." Proc. Roy. Soc. (London) A 200, 523-541.
  • 23. Perzyna, P. (1963) "The constitutive eąuations for ratę sensitive plastic ma-terials". Quart. Appl Math,, 20, 321-332.
  • 24. Perzyna, P. (1966) "Fundamcntal problems in viscoplasticity". Advances in Applied Mechanics, 9, 243-377.
  • 25. Perzyna, P., 1971. "Thermodynamic theory of viscoplasticity". Advances in Applied Mechanics, 11, 313-354.
  • 26. Perzyna P. (1984) "Constitutive modelling of dissipativc solids for postcriti-cal behaviour and fracture". ASME J. Eng. Materials and Technology, 106, 410-419.
  • 27. Perzyna, P. (1986a) "Internal state variable descriplion o f dynamie fracture of ductile solids". Int. J. Solids Structures, 22, 797-818.
  • 28. Perzyna, P. (1986b) "Constitutive modelling for brittle dynamie fracture in dissipative solids". Arch. Mechanics, 38, 725-738.
  • 29. Perzyna, P. (1995) "Interactions of elastic-viscoplastic waves and localiza-tion phenomena in solids". In Proceedings IUTAM Symposium on Nonlinear Waves in Solids, August 15-20, 1993, Yictoria, Canada; (Eds. J.L. Wegner and F.R. Norwood), ASME 1995, pp. 114-121.
  • 30. Perzyna, P. (2001) "Thermo-elasto-viscoplasticity and damage". In Hand-book of Materials Behaviour Models. (Ed. J. Lemaitre), Academic Press, New York, pp. 821-834.
  • 31. Perzyna, P. (2005) "The thermodynamical theory of elasto-viscoplaslicity". Engineering Transations, 53, 235-316.
  • 32. Perzyna, P., and Drabik, A. (1989) "Description of micro-damage process by porosity parameter for nonlinear viscoplasticity". Arch. Mechanics, 41, 895-908.
  • 33. Perzyna, P., and Drabik, A. (2006) "Micro-damagc mechanism in adiabatic processes". Engineering Transations (submitted for publication).
  • 34. Shima, S., and Oyanc, M. (1976) "Plasticity for porous solids." Int. J. Mech. Sci, 18, 285-291.
  • 35. Shockey, D.A., Seaman, L., and Curran, D.R. (1985) "The microstatistical fracture mechanics approach to dynamie fracture problem." Int. J. Fracture, 27, 145-157.
  • 36. Sidey, D., and Coffin, E.F. (1979) "Low-cycle fatigue damage mechanism at high temperature." In Fatigue Mechanism, Proc. ASTM STP 675 Symposium Kansas City, Mo., May 1978, (J.T. Fong, Ed.), Baltimore, pp. 528-568.
  • 37. Sluys, L.J. (1992) Wave propagation, localization and dispersion in soften-ing solids. Doctoral thesis, Delft Uniwersity Press, Delft.
  • 38. Truesdell C., andNoll W. (1965) The nonlinear field theories. Handbuch der Physik, Band TII/3, pp. 1-579, Springcr, Berlin.
  • 39. Zhou, M., Rosakis, A.J. and Ravichandran G. (1996) "Dynamic propagating shear band in impact-loaded prenotched plates. I. Experirnental investiga-tions o f temperaturę signatures and propagation speed"../. Mech. Phys. Sol-ids, 44, 981-1006.
  • 40. Zhou, M., Ravichandran G. and Rosakis, A.J. (1996) "Dynamic propagating shear band in impact-loaded prenotched plates. II. Numerical simulations". J. Mech. Phys. Solids, 44, 1007-1032.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPP1-0064-0058
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.