Czasopismo
2006
|
Vol. 31, No. 2
|
135-155
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, efficient pipelined architectures for Least Mean Square (LMS) adaptive filtering and system identification of discrete-time Volterra models is presented. First, the multichannel embedding is adopted for the transformation of the discrete-time Volterra model to an equivalent multi-input single output format. Then, the LMS algorithm with delayed coefficients adaptation is applied, for the identification of the model parameters. The adaptation delay introduced in the computational flow of the adaptive scheme, allows for a pipelined implementation, however, the convergence and tracking properties of the algorithm are affected. Proper correction terms are subsequently introduced that compensate the adaptation delay and give results identical to the original LMS algorithm, subject to a latency delay.
Rocznik
Tom
Strony
135-155
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
autor
autor
- University of Peloponnese, Department of Telecommunications, Terma Karaiskaki, 22100 Tirpoli, Greece
Bibliografia
- [1] M. Banat, Pipelined Volterra filter, Electronic Letters, Vol. 28, no. 13, pp. 1276-1278, June 1992.
- [2] A. Bellini et al, Non-linear digital audio processor for dedicated loudspeaker systems, Proc. IEEE Conf. Consumer Electronics, June 1998, LA, USA
- [3] S. Benedetto, E. Biglieri, Principles of Digital Transmission, Kluwer Academic 1999.
- [4] R. Bernandini, A fast algorithm for general Volterra filtering, IEEE Trans. Communications, Vol. 48, no. 11, pp. 1853-1864, Nov. 2000.
- [5] A. Chaturvedi and G. Sharma, A new family of concurrent algorithms for adaptive Volterra and linear niters, IEEE Trans. Signal Process., Vol. 47, no. 9, pp. 2547-2551, Dec 1997.
- [6] S. Douglas, Q- Zhu, and K. Smith, A pipelined LMS adaptive FIR filter architecture without adaptation delay, IEEE Trans. Signal Processing, pp. 775-779, March 1998.
- [7] F.J. Doyle III, R. Pearson and B. Ogunnaike, Identification and Control of Process Systems using Volterra models, Springer-Verlag, New York, 1999.
- [8] FJ. Doyle III, B. Ogunnaike and R. Pearson, Nonlinear model based control using second order Volterra models, Automatica, vol. 31, pp.697-714,1995
- [9] G. Glentis, K. Berberidis, and S. Theodoridis, Efficient least squares adaptive algorithms for FIR transversal filtering: a unified view, IEEE Signal Processing Magazine, pp. 13-42, 1999.
- [10] G.Glentis, P. Kouloulas, and N. Kalouptsidis, Efficient algorithms for Volterra System Identification, IEEE Trans, on Signal Processing, vol. 47, pp.3042-3057, Nov. 1999.
- [11] G. Glentis, An efficient pipelined LMS algorithm for Volterra system identification, Proc. of the Nonlinear Signal and Image Processing Conference, NSIP-01, June 2001, Baltimore, USA.
- [12] D. Griffith, J. Gonzalo and R. Arce, Partially decoupled Volterra filters: Formulation and LMS adaptation, IEEE Trans. Signal Process., Vol. 45, no. 6, pp. 1485-1494, June 1997.
- [13] D. Griffith, J. Gonzalo and R. Arce, A partially decoupled RLS algorithm for Volterra filter, IEEE Trans. Signal Process., Vol. 47, no. 2, pp. 579-582, Feb. 1999.
- [14] A. Guitierrez, and W. Ryan, Performance of Volterra and MLSD receivers for nonlinear band-limited satellite systems, IEEE Trans, on Communications, vol. 48, pp. 1171-1177, July 2000.
- [15] T. Harada, M. Muneyasu and T. Hinamoto, A pipelined architecture of quadratic adaptive Volterra filters based on NLMS algorithm, Proc. IEEE ISCAS, pp. 785-788,2001
- [16] H. Herzberg, R. Haimi-Cohen, and Y. Beery, A systolic array realization of an LMS adaptive filter and the effects of delayed adaptation, IEEE Trans. Signal Processing, pp. 2799-2803, Nov. 1992.
- [17] N. Kalouptsidis, Signal Processing Systems: Theory and Design, John Wiley 1997
- [18] H. Kwan, S. Im, E. Powers and W. Swartzlander, Parallel implementation of a fast third-order Volterra digital filter, Journal of VLIS Signal Processing, Vol. 21, pp. 117-130, 1999.
- [19] J. Lin, and C. Wei, Adaptive nonlinear decision feedback equalization with channel estimation and timing recovery in digital magnetic recording systems, IEEE Trans. Circuts Systems II, vol. 42, pp. 196-206, March 1995.
- [20] J. Lin and R. Unbehauen, 2-D adaptive Volterra filter for 2-D nonlinear channel equalization and image restoration, Electronics Lett. vol. 28, pp. 180-182, 1992.
- [21] G. Long, F. Ling, and J. Proakis, The LMS algorithm with delayed coefficients adaptation, IEEE Trans. Acoust Speech, Signal Processing, pp. 1397-1405, Sept. 1989; (pp. 230-232, Jan. 1992 corrections).
- [22] Y. Lou, C. Nikias and A. Venetsanopoulos, Efficient VLSI array processing structures for adaptive quadratic digital filters, Circuits, Systems Signal Process., Vol. 7, no. 2, pp. 253-273>19S8.
- [23] B. Maner, FJ. Doyle III, B. Ogunnaike and R. Pearson, Nonlinear model predictive control of multivariable polymerization reactor using second order Volterra series, Au-tomatica, vol 32, pp. 1285-1302,1996.
- [24] S. Marsi and G. Sicuranza, FPGA implementation of quadratic filters, Proc. of the Nonlinear Signal and Image Processing Conference, NSIP-01, June 2001, Baltimore, USA.
- [25] V. J. Mathews, Adaptive polynomial filters, IEEE Signal Proc. Mag., pp. 10-26, July 1991.
- [26] V.J. Mathews, and G. Sicuranza, Polynomial Signal Processing, Wiley 2000
- [27] K. Matsubara, K. Nishikawa, and H. Kiya, Pipelined LMS adaptive filter using a new look-ahead transformation, IEEE Trans. Circuits Sys. II, pp. 51-55, Jan. 1999. '
- [28] B. Mertzios, Parallel modeling and structure of nonlinear Volterra discrete systems, IEEE Trans. Circuits and Systems-I, Vol. CAS-141, no. 5, pp. 359-371, May 1994.
- [29] D. Mirri, et al, Nonlinear dynamic modelling based on modified Volterra series approaches, Measurement, vol. 33, pp. 9-21, Jan. 2003.
- [30] M. Ozden, A. Kayran and E. Panayirci, Adaptive Volterra channel equalisation with lattice orthogonalisation, IEE Proc. Communic., Vol. 145, no. 2, pp. 109-115, April 1998.
- [31] R.D. Poltmann, Conversion of the delayed LMS algorithm into the LMS algorithm, IEEE Signal Proc. Letter, vol. 2, pp. 223, Dec. 1995.
- [32] A. Pillarizetti, and L. Cattafesta, Adaptive identification of fluid dynamic systems, Proc. 31st American Institute of Aeronautics and Astronautics, June 2001, Anaheim Canada.
- [33] M. Reed and M. Hawksford, Efficient implementation of the Volterra filter, IEE Proc. Vis. Image Signal Process., Vol. 147, no. 2, pp. 109-114, April 2000.
- [34] W.J. Rugh, Nonlinear System Theory, John Hopkins Univ. Press, 1981
- [35] J. Schattschneider, and U. Zolzer, Discrete time models for nonlinear audio systems, Proc. 2nd COST Workshop on Digital Audio Effects, Dec. 1999, Trondeheim.
- [36] G. Sicuranza, and A. Carini, Filtered-x afrme projection algorithm for multichannel active noise control using second order Volterra filters, IEEE Signal Proc. Letters, vol. 11, pp. 853-857, Nov. 2004.
- [37] A. Stenger, L. Trautmann, and R. Rabenstein, Nonlinear acoustic echo cancellation with 2nd order adaptive Volterra filters, Proc. IEEE ICASSP, March 1999, Phoenix, USA.
- [38] M. Syed and J. Mathews, Lattice algorithms for recursive least squares adaptive second-order Volterra filtering, IEEE Trans. Circuits and Systems-II, Vol. CAS-II 41, no. 41, pp. 202-214, March 1994.
- [39] H. Tan, and N. Sepehri, Parametric fault diagnosis for electrohydraulic cylinder drive units, IEEE Trans. Industrial Electronics, vol. 49, pp. 96-106, Feb. 2002.
- [40] J. Thomas, Pipelined systolic architectures for DLMS adaptive filtering, J. of VLSI Signal Processing, 12, pp. 223-246, 1996.
- [41] H. Unbehauen, Some new trends in identification and modeling of nonlinear dynamical systems, Applied Mathematics and Computation, vol. 78, pp. 279-297, 1996.
- [42] A. Zhu, and T. Brazil, Behavioral modeling of RF power amplifiers based on pruned Volterra series, IEEE Microwave and Wireless Components Letters, vol. 14, pp. 563-565, Dec. 2004.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPP1-0064-0050