Warianty tytułu
Języki publikacji
Abstrakty
In spite of a number of different practical methods of sterilization, a peril from a side of bacteria and viruses still makes a gigantic problem in hospitals. Ultra-violet radiation, usually used for this purpose, not always proves sufficient. Therefore, searches for other methods are under way. One of the possibilities is a usage of additional substances, insensible for human organism, assisting the sterilization process. A substance that fulfils these criteria is titanium dioxide TiO2, exhibiting photocatalytic properties. After UV radiation, in the presence of oxygen, TiO2 creates active forms of oxygen with high efficiency. These formations attack cellular bacteria, leading to the destruction of nearly 100% of their population. Such a high of degree of effectiveness is often unattainable by using UV radiation alone. Popular methods of deposition of thin titanium dioxide films comprise: sol-gel techniques, ionic sputtering, pyrolitic spraying, cathodic and atomic deposition. However, by means of these methods it is difficult to receive a coating having suitable chemical structure and at the same time characterized by a very good adhesion to a substrate. Thin films deposited with the help of glow discharge methods are well-known for their excellent adhesion to substrates. Simultaneously, by careful monitoring process parameters, one can influence a structure of the layers, their thickness and properties. In the present work, a method of deposition of titanium dioxide by usage of low temperature plasma (PECVD) is introduced. Optical properties of the films, obtained with this method, have been examined by means of UV-VIS and ellipsometric investigations. Morphology as well as elemental composition of titanium oxide was studied with the help of scanning electron microscopy (SEM), equipped with energy dispersive X-ray (EDX) analysis. Chemical structure was investigated using FTIR spectroscopy.
Czasopismo
Rocznik
Tom
Strony
101-110
Opis fizyczny
Bibliogr. 31 poz., Tabl. 2, Rys. 7
Twórcy
autor
- Institute of Materials Science and Engineering, Technical University of Łódź, Stefanowskiego 1/15, 90-924 Lódź, Poland
autor
- Institute of Materials Science and Engineering, Technical University of Łódź, Stefanowskiego 1/15, 90-924 Lódź, Poland, asobczyk@p.lodz.pl
autor
- Institute of Materials Science and Engineering, Technical University of Łódź, Stefanowskiego 1/15, 90-924 Lódź, Poland
autor
- Institute of Materials Science and Engineering, Technical University of Łódź, Stefanowskiego 1/15, 90-924 Lódź, Poland
Bibliografia
- [1] J.C. Yu, Y. Xie, H.Y. Tang, L. Zhang, H.C. Chan and J. Zhao, J. Photochem and Photobiol., 156, 235 (2003).
- [2] L. Castańeda, J.C. Alonso, A. Ortiz, E. Andrade, J.M. Saniger and J.G. Bańuelos, Mat. Chem. Phys., 77, 938 (2002).
- [3] P.S.M. Dunlop, J. A. Byrne, N. Manga and B.R. Eggins, J. Photchem. Photobiol. A: Chemistry, 118, 355 (2002).
- [4] K. Sunada, T. Watanabe and K. Hashimoto, J. Photochem and Photobiol, 156, 227 (2003).
- [5] B. Kim, D. Kim, D. Cho and S. Cho, Chemosphere, 52, 277 (2003).
- [6] N. Huang, Z. Xiao, D. Huang and Ch. Yuan, Supramolecular Sc., 5, 559 (1998).
- [7] H.L. Liu, T.C.K. Yang, Process Biochemistry, 39, 475 (2003).
- [8] N. Somasundaram and C. Srinivasan, J. Photochem. Photobiol. A: Chem,, 99, 67 (1996).
- [9] C.C. Trapalis, P. Keivanidis, G. Kordas, M. Zaharescu, M. Crisan, a. Szatvanyi and M. Gartner, Thin Solid Films, 433, 186 (2003).
- [10] O.J. Jung, S.H. Kim, K.H. Cheong, W. Li and S.I. Saha, Bull Korean Chem. Soc., 24, 49 (2003).
- [11] A. Mills and S. Le Hunte, J. Photochem. Photobiol. A: Chem., 108, 1 (1997).
- [12] J.A. Ibańez, M.I. Litter and R.A. Pizarro, J Photochem. Photobiol. A: Chem., 157,81 (2003).
- [13] M. Xu, N. Huang, Z. Xiao and Z. Lu, Supramol. Sci., 5, 449 (1998).
- [14] M. Xu, J. Ma, J. Gu and Z. Lu, Supramol Sci., 5, 511 (1998).
- [15] M. Bekbolet, Wat. Sci. Tech., 35, 95 (1997).
- [16] R. Armon, N. Laot and N. Narkis, J. Adv. Oxid Technol., 3, 145 (1998).
- [17] G. Biguzzi and G. Shama, Lett. Appl. Microbiol., 19, 458 (1994).
- [18] H.N. Pham, T. Mc Dowell and E. Wilkims, J. Environ. Sci. Health, 3, 627 (1995).
- [19] D.M. Blake, P.C. Manness, Z.H. Hvang, E.J. Wolfnim and J. Huang, Separat. Purificat. Methods, 28, 1 (1999).
- [20] T. Matsunaga, R. Tomada, T. Nakajimo and H. Wake, FEMS Microbiol. Lett., 29, 211 (1985).
- [21] R. Watts, S. Kony, G.C. Miller and B.Y. Henry, Water Res., 29, 95 (1995).
- [22] J. Povilleau, J. Devilliers, F. Garrido, S. Duran-Vidal and E. Mahe, Mater Sci. Eng. B, 47,235 (1997).
- [23] Y. Wang, H. Cheng, Y. Hao, J. Ma, W. Li and S.J. Cai, J. Mat Sci., 34, 3721, (1999).
- [24] F. Zhang, X. Lin, S. Jin, H. Bender, N.Z. Lov and Z.H. Wilson, Nvel. Instru, Meth. Phys. Res. B., 142, 61 (1998).
- [25] P. Alexandrov, J. Koprinasova and D. Jodorov, Vacuum, 47, 133 (1996).
- [26] H.Y Ha, S.W Nam, T.H Lim, I.H. Oh and S.A. Hong, J. Membrane Sci., III, 81 (1996).
- [27] P.A. Madrid, G.V. Nevaraz-Moorilón, E. Orrantia-Borunda and M.M. Yoshida, PEMS Microbiol. Lett., 211, 183 (2002).
- [28] H. Selhofor, Vacuum and thin films, August, 15 (1999).
- [29] L. Marlinu, M. Latréche, W. Hajek, J.E. Sapiela, A. Argoitia, W.T. Beauchamp, 43 rd Annual Technical Conference Proceedings, Denver, April 15-20, 177 (2000).
- [30] J. Tauc, R. Grigorovici and A. Wancu, Phys. Status Solid, 15, 627 (1966).
- [31] F. Zhang, X. Wang, Ch. Li, H. Wang, L. Chen and X. Liu, Surf. Coatings Technol., 110,136 (1998).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPP1-0061-0045