Warianty tytułu
Elektroutlenianie fenolu na elektrodach utworzonych z wybranych typów eksfoliowanych grafitów
Języki publikacji
Abstrakty
In the presented work three different types of graphite intercalation compounds (GICs} were thermally exfoliated and then subjected to electro-chemically investigated in alkaline solution. H2S04-G/C was synthesized by the galvanostatic oxidation of host graphite in 18 M H2SO4, whereas CrO3-G/C was prepared on refluxing the graphite flakes in glacial acetic acid/CrO3solution. The third compound. FeCl3GIC was formed during two days reaction between graphite and 4.8 M solution of FeCl3in nitromethane. All of investigated samples were used as electrode materials in the reaction of phenol electrooxidation examined by the galvanostatic and cyclic voltamrnetry techniques. The achieved results clearly indicate, that the course of phenol electrooxidation depends mainly on the type of investigated electrode material. The appearance of some peaks on the voltammetric curves and oscillations on some of the galvanostatic curves suggests tentatively that the chemical composition as well as the structure of EG surfaces are considerably altered by the products of the phenol electrooxidation. Among them the film of oligomer compounds seems to be dominant. However, it can not be excluded that during the proceeding reactions, the formation of other products (i.e. quinones, fumaric and maleic acids) also takes place.
Badano współczynnik adsorpcji wodoru cząsteczkowego w fazie gazowej na powierzchni super aktywowanego węgla metodą wolumetryczna. Ce-lern badania było uzyskanie możliwie najlepszych materiałów do magazynowania energii. Kilka sposobów obróbki surowych próbek zastosowano w celu polepszenia właściwości adsorpcyjnych węgla. Największe zdolności adsorpcji uzyskano po wygrzewaniu w wysokiej temperaturze przy obniżonym ciśnieniu. Współczynnik adsorpcji w 77 K i 2 MPa wynosił 3,158 % wag. Przeniesienie ładunku pomiędzy litem a grupami węglowymi na powierzchni przez domieszkowanie zwiększyło energię adsorpcji. Zauważono również stopniowy spadek ilości adsorbowanych moduł H2, w związku z zajmowaniem aktywnych miejsc przez jony litu.
Twórcy
autor
- Poznań University of Technology, Institute of Chemistry and Technical Electrochemistry, Poland , jan.skowronski@put.poznan.pl
autor
- Poznań University of Technology, Institute of Chemistry and Technical Electrochemistry, Poland
Bibliografia
- 1. Shter G. C., Shindler Yu., Matatov-Meytal Yu., Grader G. S., Sheintuch M., Thermal behavior of the phenol-Pd-ACC system. Carbon, 2002, vol. 40, p. 2547.
- 2. Alejandre A., Medina F., Salagre P., Fabregat A., Sueiras J. E., Characterization and activity of copper and nickel catalysts for the oxidation of phenol aqueous solutions. Appl. Catal. B, 1998, vol. 18, p. 307.
- 3. Armenante P. M., Kajkewitz D., Lewandowski G. A., Jou C. J., Anaerobic-aerobic treatment of halogenated phenolic compounds. Wat. Res., 1999, vol. 33, p. 681.
- 4. Gottrell M., Kirk D. W., A study of electrode passivation during aqueous phenol electrolysis. J. Electrochem. Soc., 1993, vol. 140, p. 1534.
- 5. Kuramitz H., Nakata Y., Kawasaki M., Tanaka S., Electrochemical oxidation of bisphenol A. Application to the removal of bisphenol A using a carbon fiber electrode. Chemosphere, 2001, vol. 45, p. 37.
- 6. Ureta-Zańartu M. S., Bustos P., Berrios C., Diez M. C., Mora M. L., Gutièrrez C., Electrooxidation of 2,4-dichlorophenol and other polychlorinated phenol at a glassy carbon electrode. Electrochim. Acta, 2002, vol. 47, p. 2399.
- 7. Cańizares P., Labato J., Garcia-Gómez J., Rodrigo M. A., Combined adsorption and electrochemical processes for the treatment of acidic aqueous phenol wastes. J. Appl. Electrochem., 2004, vol. 34, p. 111.
- 8. Iotov P. I., Kalcheva S. V., Mechanistic approach to the oxidation of phenol at a platinum/gold electrode in an acidic medium. J. Electranal. Chem., 1998, vol. 442, p. 19.
- 9. Zanta C. L. P. S., Michaud P. A., Comninellis C., de Andrade A. R., Boodts J. F. C., Electrochemical oxidation of p-chlorophenol on SnO2-Sb2O5 based anodes for wastewater treatment. J. Appl. Electrochem., 2003, vol. 33, p. 1211.
- 10. Bock C., MacDougall B., The influence of metal oxide properties on the oxidation of organics. J. Electroanal. Chem., 2000, vol. 491, p. 48.
- 11. Feng Y. J., Li X. Y., Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution. Wat. Res., 2003, vol. 37, p. 2399.
- 12. Cańizares P., Garcia-Gómez J., Sáez C., Rodrigo M. A., Electrochemical oxidation of several chlorophenols on diamond electrodes. Part I. Reaction mechanism. J. Appl. Electrochem., 2003, vol. 33, p. 917.
- 13. Skowroński J. M., Krawczyk P., Electrochemical oxidation of phenol on exfoliated HClO4-GIC and CrO3-GIC in alkaline solution. Extended Abstracts, 51th Annual Meeting of International Society of Electrochemistry. Warsaw University, 2000, p. 218.
- 14. Skowroński J. M., Krawczyk P., Electrochemical oxidation of phenol on exfoliated graphite-based electrode. Extended Abstracts, Eurocarbon 2003, Oviedo 2003.
- 15. Skowroński J. M., Krawczyk P., Electrooxidation of phenol at exfoliated graphite electrode in alkaline solution. J. Solid State Electrochem. , 2004, vol. 8, p. 442.
- 16. Skowroński J. M., Jurewicz K., Anodic oxidation of CrO3-graphite intercalation compounds in sulfuric acid. Synth. Met., 1991, vol. 40, p. 161.
- 17. Skowroński J. M., Electrochemical intercalation of HClO4 into graphite and CrO3 - graphite intercalation compound. Synth. Met., 1995, vol. 73, p. 21.
- 18. Hooley J. G., The effect of flake thickness on the intercalation of graphite. Carbon, 1972, vol. 10, p. 155.
- 19. Yoshida A., Hishiyama Y., Inagaki M., Exfoliated graphite from various intercalation compounds. Carbon, 1991, vol. 29, p. 1227.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPP1-0059-0031