Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | Vol. 28, No. 2 | 95-112
Tytuł artykułu

Adaptive least squares algorithms for two dimensional system identification and filtering: a unified approach

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a unified approach is presented for adaptive Least Squares Two-Dimensional system identification and linear filtering. First, a unified deterministic Least Squares criterion is introduced, and subsequently utilized for the derivation of a general algorithmic framework for the adaptive Two-Dimensional system identification and filtering. Overdetermined, as well as underdetermined Least Squares Two-Dimensional adaptive algorithms are derived, from the proposed general adaptive scheme. In this way, known Two-Dimensional adaptive algorithms are interpreted as special cases of a general algorithmic form. Moreover, new adaptive algorithms are derived, following the proposed methodology.
Wydawca

Rocznik
Strony
95-112
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
  • Technological Education Institute of Crete, Branch at Chania, Department of Electronics, 3, Romanou Str., Chalepa, 73133 Chania, Crete, Greece
  • Technological Education Institute of Crete, Branch at Chania, Department of Electronics, 3, Romanou Str., Chalepa, 73133 Chania, Crete, Greece
Bibliografia
  • [1] A. K. Jain, Fundamentals of Digital Image Processing, Prentice Hall, 1989.
  • [2] J. Lim, Two-Dimensional signal and image processing, Prentice Hall, 1990.
  • [3] D. E. Dudgeon and R. M. Mersereau, Multidimensional Digital Signal Processing. Prentice Hall, 1984.
  • [4] A. Jain, 'Advances in mathematical models for image processing,' Proc. of the IEEE, pp. 502-528, May 1981.
  • [5] P. Maragos, R. Schafer, and R. Merserau, 'Two-Dimensional linear prediction and its application to adaptive predictive coding of images,' IEEE Trans. on Acoust. Speech and Signal Proc., pp. 1213-1229, Dec. 1984.
  • [6] Y. Yum, and S. Park, 'Optimum recursive filtering of noisy two-dimensional data with sequential parameter identification,' IEEE Trans. on Pattern Analysis and Machine Intel. pp. 337-344, May 1983.
  • [7] P. Wellstead, G. Wagner, and J. Caldas-Pinto, 'Two-dimensional adaptive prediction, smoothing and filtering,' IEE Proc. Pt. F, Vol. 134, pp. 253-267, June 1987.
  • [8] M. Nam, and W. O'Neill, 'Adaptive linear predictive coding of time-varying images using multidimensional recursive least squares ladder filters,' IEEE J. on Selected Areas in Comm., Vol. 5, pp. 1115-1126, Aug. 1987.
  • [9] L. Zou and B. Liu, 'On resolving Two-Dimensional Sinusoids in white noise using Different Spectral estimates,' IEEE Trans. on ASSP-36, pp. 1338-1350, 1988.
  • [10] H. Kaufman and A. M. Tekalp, 'Survey of estimation techniques in image restoration,' IEEE Control Systems, pp. 16-23, Jan. 1991.
  • [11] A. Elfishawy, S. Kesler, and A. Abutaleb, 'Adaptive algorithms for change detection in image sequence,' Signal Processing 23, pp. 179-191, 1991.
  • [12] H. Youlal, M. Janati-I, and M. Najim, 'Two-Dimensional joint process lattice for adaptive restoration of images,' IEEE Trans. on Image Processing, Vol. 1, pp. 367-378, July 1992.
  • [13] C. Knittle, and N. Magotra, 'Image enchancement using the adaptive correlation enhancer,' IEEE Trans. on Cas-II, Vol. 39, pp. 862-865, Dec. 1992.
  • [14] T. Soni, J. Zeidler and W. Ku, 'Performance evaluation of 2-D adaptive prediction filters for detection of small objects in image data,' IEEE Trans. on Image Processing, vol. 2, pp. 327-339, July 1993.
  • [15] P. French, J. Jeidler, and W. Ku, 'Enhanced detectability of small objects in correlated clutter using an improved 2-D adaptive lattice algorithm,' IEEE Trans. on Image Process., Vol. 6, pp. 383-397, March 1997.
  • [16] H. Kaufman, J. Woods, S. Dravida, and A. M. Tekalp, 'Estimation and identification of Two-Dimensional images,' IEEE Trans. on Automatic Control, pp. 745-756, July 1983.
  • [17] A. Tekalp, H. Kaufman, and J. Woods, 'Fast recursive estimation of the parameters of a space-varying autoregressive image model,' IEEE Trans. on ASSP, vol. 33, pp. 469-472, April 1985.
  • [18] M. Hadhoud, and D. Thomas, 'The Two-Dimensional adaptive LMS (TDLMS) algorithm,' IEEE Trans. on Circ. Systems, vol. 35, pp. 485-494, May 1988.
  • [19] Y. Boutalis, S. Kollias and G. Carayannis, 'A fast multichannel approach to adaptive image estimation,' Trans. ASSP-37, pp. 1090-1098, 1989.
  • [20] P. Zho, E. Plotkin, and M. Swamy, 'Exponentially fading MLS estimation of two-dimensional noncausal and nonstationary SAR model parameters,' Signal Processing 37, pp. 275-285,1994.
  • [21] C. Zho, E. Plotkin, and M. Swamy, '2-D fast Kalman algorithms for adaptive parameter estimation of nonhomogeneous Gaussian Markov random field model,' IEEE Trans. on CAS-II, vol. 41, pp. 678-692, Oct. 1994.
  • [22] X. Liu, and M. Najim, 'A Two-Dimensional fast lattice recursive least squares algorithm,' IEEE Trans. on Signal Processing, vol. 44, pp. 2557-2567, Oct. 1996.
  • [23] C. W. Therrien, 'Relations between 2-D and multichannel linear prediction,' IEEE Trans. Acoust. Speech, Signal Proc., vol. ASSP-29, pp. 454-456, June 1981.
  • [24] G. Glentis and N. Kalouptsidis, 'Fast algorithms for 2-D least squares FIR filtering,' IEEE Int. Conf.-ASSP-91, pp. 3009-3012, Toronto, Canada, 1991.
  • [25] G. Glentis and N. Kalouptsidis, 'Fast Adaptive Algorithms for Multichannel Filtering and System Identification,' IEEE Transactions on Signal Processing, vol. 40, pp. 2433-2458, October 1992.
  • [26] G. O. Glentis, C. H. Slump, and O. Herrmann, 'A true order recursive algorithm for two-dimensional mean squared error linear prediction and filtering, Signal Processing, vol. 80, pp. 1399-1418, 2000.
  • [27] D. Slock, 'Underdetermined growing and sliding window covariance fast transversal filter RLS algorithms,' Signal Processing VI: Theories and Applications, pp. 1169-1173, 1992.
  • [28] G. O. Glentis, K. Berberidis, and S. Theodoridis, Efficient least squares adaptive algorithms for FIR transversal filtering: a unified view, IEEE Signal Processing Magazine, pp. 13-42, July 1999.
  • [29] M. Muneyasu, and T. Hinamoto, 'A realization of 2-D adaptive filters using affine projection algorithm,' J. Franklin Inst. vol. 335, No. 7, pp. 1185-1193, 1998.
  • [30] G. Glentis, 'A fast Affine Projection Algorithm for 2D filtering and linear prediction,' Proc. IEEE ICIP-01, Thessaloniki, Greece, September 2001.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPP1-0035-0081
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.