Warianty tytułu
Mikrofalowy generator mikoplazmy
Języki publikacji
Abstrakty
The microwave microplasma generator is a device used to produce small non-thermal plasma at atmospheric pressure. In our experiment the microplasma is generated by using 2.45 GHz microwaves at powers between 4 W to 80 W and argon as the working gas. The length and diameter of plasma jet is 1.5-14 mm and 0.5-1.5 mm, respectively. One of the application of the microwave microplasma generator is the cleaning process of printed circuit board (PCB).
Prezentowany mikrofalowy generator mikroplazmy jest urządzeniem wytwarzającym nietermiczną plazmę pod ciśnieniem atmosferycznym. Mikroplazma w tym przypadku wzbudzana jest mikrofalami o częstotliwości 2,45 GHz i mocy od 4 W do 80 W. Jako gaz roboczy zastosowano argon. Długość i szerokość płomienia plazmy wynosi odpowiednio 1,5-14 mm i 0,5-1,5 mm. Jednym z możliwych zastosowań generatora mikroplazmy jest proces oczyszczania płytek drukowanych.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
80-82
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
autor
autor
- The Szewalski Institute of Fluid-Flow Machinery Polsih Academy of Sciences, mgoch@imp.gda.pl
Bibliografia
- [1] Kang J.G., Kim H.S., Ahn S.W., Uhm H.S., Development of the RF Plasma Source at Atmospheric Pressure, Surface and Coating Tech., 171 (2003), 125-128.
- [2] Kim J. Terashima K., Microwave Excited Nonequilibrium Atmospheric Pressure Microplasmas for Polymer Surface Modification, Proc. APSPT-4, (2002), 324-327.
- [3] SURFX Technologies [on line]. Available on www.surfxtechnologies.com (concluded on 07.08.04).
- [4] Iza F., Hopwood J., Split-Ring Resonator Microplasma: Microwave Model, Plasma Impedance and Power Efficiency, Plasma Sources Sci. Technol, 14 (2005), 397-406.
- [5] Kikuchi T., Hasegawa Y., Shirai H., RF Microplasma Jet at Atmospheric Pressure: Characterization and Application to Thin Film Processing, J. Phys. D: Appl. Phys., 37 (2004), 1537-1543.
- [6] Stonies R., Schermer S., Voges E., Broekaert J.A.C., A New Small Microwave Plasma Torch, Plasma Sources Sci. Technol., 13 (2004), 604-611.
- [7] Stalder K.R., McMillen D.F., Woloszko J., Electrosurgical Plasmas, J. Phys. D: Appl. Phys., 38 (2005), 1728-1738..
- [8] Sladek R.E.J., Stoffels E., Deactivation of Escherichia Coli by the Plasma Needle, J. Phys. D: Appl. Phys., 38 (2005), 1716-1721.
- [9] Park S.J., Chen J., Liu C., Eden J.G., Independently Addressable Subarrays of Silicon Microdischarge Devices: Electrical Characteristics of Large (30x30) Arrays and Excitation of a Phosphor, Appl. Phys. Lett., 79 (2001), 2100-2002.
- [10] Kurunczi P., Lopez J., Shah H., Becker K., Excimer Formation in High-Pressure Microhollow Catode Discharge Plasmas in Helium Initiated by Low-Energy Electron Collisions, Int. J. Mass Spectrom., 205 (2001), 277-283.
- [11] Brandenburg R., Wagner H.E., Morozov A.M., Kozlov K.V., Axial and Radial Development of the Microdischarges of Barrier Discharges in N2/O2 Mixtures at Atmospheric Pressure, J. Phys. D: Appl. Phys., 38 (2005), 1649-1659.
- [12] Miclea M., Kunze K., Musa G., Franzke J., Niemax K., The Dielectric Barrier Discharge - a Powerful Microchip Plasma for Diode Laser Spectrometry, Spectrochim. Acta B, 56 (2001), 37-43.
- [13] Ichiki T., Koidesawa T., Horiike Y., An Atmospheric-Pressure Microplasma Jet Source for the Optical Emission Spectroscopic Analysis of Liquid Sample, Plasma Sources Sci. Technol., 12 (2003), 16-20.
- [14] Schermer S., Bings N.H., Bilgic A.M., Stonies R., Voges E., Broekaert J.A.C., An Improved Microstrip Plasma for Optical Emission Spectrometry of Gaseous Species, Spectrochim. Acta B, 58 (2003), 1585-1596.
- [15] Jasiński M., Mizeraczyk J., Zakrzewski Z., Spectroscopic Measurement of Electron Density in Microwave Torch Discharge at Atmospheric Pressure, Frontiers in Low Temperature Plasma Diagnostics VI, Les Houches, France, April 17-21, 2005, EP6 – 1-4.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOZ-0007-0006