Warianty tytułu
Obliczenia maksymalnej elektromagnetycznej siły zwarciowej w szynoprzewodzie z izolowanymi fazami przy wykorzystaniu metody elementów skończonych
Języki publikacji
Abstrakty
Calculation of maximum short circuit electromagnetic forces is one of the most important factors in the mechanical design and optimization of isolated phase buses which is required by the manufacturing companies. In this paper, these forces as well as associated eddy currents and magnetic fields are calculated using finite element method. A software program is developed to find the worst conditions at which a maximum short circuit electromagnetic force occurs. It is shown that the maximum force strongly depends on the initial phase current angle at the instance the short circuit occurs. Two common enclosure material i.e. aluminum and steel are also compared regarding short circuit forces.
Maksymalne siły elektromagnetyczne zwarciowe to jeden z najważniejszych parametrów mechanicznych przy projektowaniu i optymalizacji izolowanych szynoprzewodów z izolowanymi fazami. W artykule obliczono te siły metodą elementu skończonego przy uwzględnieniu prądów wirowych i i pola magnetycznego. Oprogramowanie obliczeniowe udoskonalono aby można było znaleźć krytyczne warunki występujące w stanach zwarcia. Wykazano że maksymalna siła zależy od początkowej fazy prądu w momencie zwarcia. Dwa typowe materiały osłony - aluminium i stal zostały porównane.
Czasopismo
Rocznik
Tom
Strony
31-35
Opis fizyczny
Bibliogr. 32 poz., rys., tab., schem.
Twórcy
autor
autor
autor
- School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran, vaezs@ut.ac.ir.
Bibliografia
- [1] A. Conangla and H. F. White, “Isolated phase bus enclosure loss factors,” IEEE Trans. Power App. Syst., PAS-87, (1968) pp. 1622–628.
- [2] Z. Piatek, A. Girodet, and M. Guillen, “Magnetic field in proximity to a three-phase gas insulated transmission line with separate phases,” in Proc. French–Polish Seminar, Villeurbanne, France, Apr. 1998, pp. 145–155.
- [3] S. K. Choi, “Analysis on the magnetic properties of an isolated phase bus system,” in Proc. 5th Int. Conf. Electrical Machines and Systems, 2001, pp. 1166–1169.
- [4] R. Benato, F. Dughiero, M. Forzan, and A. Paolucci, “Proximity effect and magnetic field calculation in GIL and in isolated phase bus ducts,” IEEE Trans. Magn, 38, (2002) 781-784.
- [5] Z. Piatek, “Method of calculating the total eddy currents induced in screens of a flat three-phase single-pole gas-insulated transmission line” PRZEGLĄD ELEKTROTECHNICZNY, 84 (2008) 137-143.
- [6] Z. Piatek, “Method of calculating total eddy currents induced in screens of symmetrical three-phase single-pole gas-insulated transmission line,” Acta Technica CSAV, 53 (2008) 103–120.
- [7] S. L. Ho, Y. Li, Edward W. C. Lo, J. Y. Xu, and X. Lin, “Analyses of three-dimensional eddy current field and thermal problems in an isolated phase bus,” IEEE Trans. Magn, 39, (2003) 1515-1518.
- [8] R. Benato and F. Dughiero, “Solution of coupled electromagnetic and thermal problems in gas-insulated transmission lines,” IEEE Trans. Magn., 39, (2003) 1741-1744.
- [9] S. L. Ho, Y. Li, J. Guo, E. W. C. LO, Calculation of eddy current field and thermal problems in an isolated phase bus, Compumag conference, Aachen, Germany, Jun. 2007, pp.857-858.
- [10] J. Wang, L. Liu, E. Wang, “Study on numerical simulation of flow and temperature fields inside isolated phase bus based on fluent,” in Proc. of Int. Conf. on Electrical Machines and Systems, Seoul, Korea, 8-11 Oct., 2007, pp. 1445-1449.
- [11] S. L. Ho, Y. Li, X. Lin, E. W. C. Lo, K. W. E. Cheng, and K. F. Wong, “Calculations of eddy current, fluid, and thermal fields in an air insulated bus duct system,” IEEE Trans. Magn., 43 (2007) 1433-1436.
- [12] Y. Li, S. L. Ho, N. Wang, J. Guo, “Electromagnetic Field and Thermal Problem in an Isolated Phase Bus by Using FE Model,” in Proc . Int. Conf. Power System Technology and IEEE Power India Conference, POWERCON, 12-15 Oct., (2008) 1 – 5.
- [13] J. Wang, L. D. Liu, Y. H. Gao, X. M. Liu, E. Z. Wang, “Study on numerical simulation of electrical fields inside isolated phase bus based on ANSOFT,” in Proc. Int. Conf. Electrical Machines and Systems, ICEMS, 17-20 Oct., (2008) 455-458.
- [14] S. L. Ho, Y. Li, X. Lin, E. W. C. Lo, K.W.E. Cheng, K.F. Wong, “Calculations of Eddy Current, Fluid, and Thermal Fields in an Air Insulated Bus Duct System,” IEEE Trans. Magn., 43 (2007) 1433-1436 .
- [15] X. Sha, J. Xianlong, P. Feng and S. Jie, “Analysis of 3D electromagnetic field for three-phase low voltage and heavy current busbar bridge system,” International Journal of Applied Electromagnetics and Mechanics, 26 (2007) 37–49.
- [16] W. R. Willson, and L. L. Mankoff, “Short-circuit forces in isolated-phase buses,” AIEE Trans. PT, 73, (1954) 382-396.
- [17] W. F. Skeats, and N. Swerdlow, “Minimizing the magnetic field surrounding isolated-phase bus by electrically continuous enclosures,” AIEE Trans. PAS 81, (1963) 655-667.
- [18] E. J. Tuohy, “Computation of eddy currents, shielding and transient forces in power system equipment by the method of images,” IEEE Trans. PAS 90, (1972) 1271-1971.
- [19] H. Hama et al., “Characteristics of short circuit electromagnetic forces in three phase enclosure type gas insulated bus,” IEEE Trans. PowerDelivery, PWRD-2 (1987) 258–264.
- [20] P. Dokopoulos, and D. Tamakis, "Analysis of transient forces in metal clad generator buses", IEEE Trans. Energy Conv., 6, (1991) 432-437.
- [21] J. P. A. Bastos, and N. Sadowski, Electromagnetic modeling by finite element method, Marcel Dekker, Inc., 2003.
- [22] D. Labridis, and P. Dokopoulos, “Finite element computation of eddy current losses in nonlinear ferromagnetic sheaths of three-phase power cables,” IEEE Trans. Power Delivery, 7 (1992) 1060-1067.
- [23] M. R. Shah, G. Bedrosian, and J. Joseph, "Steady state loss and short circuit forces analysis of a three phase bus using a coupled finite element + circuit approach," IEEE Trans. Energy Conv., 14 (1999) 1485-1489.
- [24] T. Takeuehi, T. Yoshizawa, Y. kuse, and H. Hama, "3-D Nonlinear transient electromagnetic analysis of short circuit electromagnetic forces in a three-phase enclosure-type gas insulated bus", IEEE Trans. on Magn., 36, (2000) 1754-1757.
- [25] D.P. Labridis, and P.S. Dokopoulos, “Electromagnetic forces in three-phase rigid busbars with rectangular cross-sections,” IEEE Trans. Power Delivery, 11 (1996) 793-800.
- [26] D. G. Triantafyllidis, P. S. Dokopoulos, and D. P. Labridis, “Parametric short-circuit force analysis of three-phase busbars—A fully automated finite element approach,” IEEE Trans. Power Delivery, 18 (2003) 531-537.
- [27] D. Labridis, and P. Dokopoulos, “Finite element computation of field, losses and forces in a three-phase gas cable with non-symmetrical conductor arrangement,” IEEE Trans. Power Delivery, 3 (1988) 1326-1333.
- [28] S. Xu, Xianlong Jin a; Feng Pang, “Analysis of Vibration and Acoustic Radiation Characteristics of Busbar Bridge System under Electromagnetic Force,” Electric Power Components and Systems, 35 (2007) 1317–1330.
- [29] A. Hassanpour Isfahani, and S. Vaez-Zadeh, “Analysis of Transient Short Circuit Electromagnetic Forces in Isolated Phase Buses,” in Proc Compumag Conf. 2007, Aachen, Germany, June 2007, pp. 743-744.
- [30] A. H. Isfahani and S. Vaez-Zadeh, “Transient Finite-Element Analysis of Short-Circuit Electromagnetic Forces in Isolated Phase Buses,” Electromagnetics, 28 (2008) 590-600.
- [31] O. Biro, “On the use of the magnetic vector potential in the finite element analysis of three dimensional eddy currents,” IEEE Trans. Magn., 25 (1989) 3145–3159.
- [32] M. Bartsch, T. Weiland, “2D and 3D calculation of Forces,” IEEE Trans. Magn. 30 (1994) 3467-3470.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOM-0017-0006